Difference between revisions of "1996 USAMO Problems/Problem 5"
| Line 1: | Line 1: | ||
| − | + | ==Problem== | |
| − | + | Let <math>ABC</math> be a triangle, and <math>M</math> an interior point such that <math>\angle MAB=10^\circ </math>, <math>\angle MBA=20^\circ</math> , <math>\angle MAC= 40^\circ</math> and <math>\angle MCA=30^\circ</math>. Prove that the triangle is isosceles. | |
| − | + | ==Solution== | |
| + | Clearly, <math>\angle AMB = 150^\circ</math> and <math>\angle AMC = 110^\circ</math>. Now by the Law of Sines on triangles <math>ABM</math> and <math>ACM</math>, we have <cmath>\frac{AB}{\sin 150^\circ} = \frac{AM}{\sin 20^\circ}</cmath> and <cmath>\frac{AC}{\sin 110^\circ} = \frac{AM}{\sin 30^\circ}.</cmath> Combining these equations gives us <cmath>\frac{AB}{AC} = \frac{\sin 150^\circ \sin 30^\circ}{\sin 20^\circ \sin 110^\circ}.</cmath> Without loss of generality, let <math>AB = \sin 150^\circ \sin 30^\circ = \frac{1}{4}</math> and <math>AC = \sin 20^\circ \sin 110^\circ</math>. Then by the Law of Cosines, we have | ||
| + | <cmath> | ||
| + | \begin{align*} | ||
| + | BC^2 &= AB^2 + AC^2 - 2(AB)(BC)\cos\angle BAC\\ | ||
| + | &= \frac{1}{16} + \sin^2 20^\circ\sin^2 110^\circ - 2\left(\frac{1}{4}\right)\sin 20^\circ\sin 110^\circ\cos 50^\circ \\ | ||
| + | &= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \frac{1}{2}\sin 20^\circ\sin 110^\circ\sin 40^\circ \\ | ||
| + | &= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \sin 20^\circ\sin 110^\circ\sin 20^\circ\cos 20^\circ \\ | ||
| + | &= \frac{1}{16} | ||
| + | \end{align*} | ||
| + | </cmath> | ||
| + | Thus, <math>AB = BC</math>, our desired conclusion. | ||
| − | |||
| − | |||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 09:25, 1 August 2013
Problem
Let
be a triangle, and
an interior point such that
,
,
and
. Prove that the triangle is isosceles.
Solution
Clearly,
and
. Now by the Law of Sines on triangles
and
, we have
and
Combining these equations gives us
Without loss of generality, let
and
. Then by the Law of Cosines, we have
Thus,
, our desired conclusion.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.