Difference between revisions of "2003 USAMO Problems/Problem 4"
(→Solution) |
(→Solution 2) |
||
| Line 50: | Line 50: | ||
by suli | by suli | ||
| − | Let's prove the first direction: if MD * MB = | + | Let's prove the first direction: if <math>MD * MB = MC^2</math>, then MF = MC. |
We start that noticing by SAS Similarity triangles MDC and MCB are similar. Thus, <MBC = <MCD. Because they intercept the same arc, <EAD = <MBC = <MCD and so EA // CF. It can further be shown that AF / AB = EC / EB using similar triangles. Now, let us use Ceva's Theorem on FBC to deduce that MF / MC = 1, and so MF = MC. | We start that noticing by SAS Similarity triangles MDC and MCB are similar. Thus, <MBC = <MCD. Because they intercept the same arc, <EAD = <MBC = <MCD and so EA // CF. It can further be shown that AF / AB = EC / EB using similar triangles. Now, let us use Ceva's Theorem on FBC to deduce that MF / MC = 1, and so MF = MC. | ||
Revision as of 16:22, 5 April 2014
Contents
Problem
Let
be a triangle. A circle passing through
and
intersects segments
and
at
and
, respectively. Lines
and
intersect at
, while lines
and
intersect at
. Prove that
if and only if
.
Solution
by April
Take
. We have:
Added diagram:
Solution 2
by suli
Let's prove the first direction: if
, then MF = MC.
We start that noticing by SAS Similarity triangles MDC and MCB are similar. Thus, <MBC = <MCD. Because they intercept the same arc, <EAD = <MBC = <MCD and so EA // CF. It can further be shown that AF / AB = EC / EB using similar triangles. Now, let us use Ceva's Theorem on FBC to deduce that MF / MC = 1, and so MF = MC.
The other direction follows similarly; the proof will be left as an exercise for the reader.
See also
| 2003 USAMO (Problems • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.