Difference between revisions of "1964 AHSME Problems"
(Created page with "== Problem 1== What is the value of <math>[\log_{10}(5\log_{10}100)]^2</math>? <math>\textbf{(A)}\ \log_{10}50 \qquad \textbf{(B)}\ 25\qquad \textbf{(C)}\ 10 \qquad \textbf{(D)...") |
m |
||
Line 17: | Line 17: | ||
<math>\textbf{(A)}\ \text{a parabola} \qquad | <math>\textbf{(A)}\ \text{a parabola} \qquad | ||
\textbf{(B)}\ \text{an ellipse} \qquad | \textbf{(B)}\ \text{an ellipse} \qquad | ||
− | \textbf{(C)}\ \text{a pair of straight lines}\qquad | + | \textbf{(C)}\ \text{a pair of straight lines}\qquad \\ |
\textbf{(D)}\ \text{a point}}\qquad | \textbf{(D)}\ \text{a point}}\qquad | ||
\textbf{(E)}\ \text{None of these}} </math> | \textbf{(E)}\ \text{None of these}} </math> | ||
Line 59: | Line 59: | ||
\textbf{(B)}\ -4 \qquad | \textbf{(B)}\ -4 \qquad | ||
\textbf{(C)}\ -2 \qquad | \textbf{(C)}\ -2 \qquad | ||
− | \textbf{(D)}\ 4k, k= \pm1, \pm2, \dots} | + | \textbf{(D)}\ 4k, k= \pm1, \pm2, \dots} \qquad \\ |
− | \qquad | ||
\textbf{(E)}\ 16k, k=\pm1,\pm2,\dots } </math> | \textbf{(E)}\ 16k, k=\pm1,\pm2,\dots } </math> | ||
Line 93: | Line 92: | ||
== Problem 8== | == Problem 8== | ||
− | The smaller root of the equation <math>\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}\right)+\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right) =0</math> is: | + | The smaller root of the equation |
+ | <math>\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}\right)+\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right) =0</math> is: | ||
<math>\textbf{(A)}\ -\frac{3}{4}\qquad | <math>\textbf{(A)}\ -\frac{3}{4}\qquad | ||
Line 99: | Line 99: | ||
\textbf{(C)}\ \frac{5}{8}\qquad | \textbf{(C)}\ \frac{5}{8}\qquad | ||
\textbf{(D)}\ \frac{3}{4}}\qquad | \textbf{(D)}\ \frac{3}{4}}\qquad | ||
− | \textbf{(E)}\ 1 } | + | \textbf{(E)}\ 1 } </math> |
[[1964 AHSME Problems/Problem 8|Solution]] | [[1964 AHSME Problems/Problem 8|Solution]] | ||
Line 105: | Line 105: | ||
== Problem 9== | == Problem 9== | ||
− | A jobber buys an article at $24 less < | + | A jobber buys an article at $24 less <math>12\frac{1}{2}</math> %. He then wishes to sell the article at a gain of <math>33\frac{1}{3}</math> % of his cost |
after allowing a 20% discount on his marked price. At what price, in dollars, should the article be marked? | after allowing a 20% discount on his marked price. At what price, in dollars, should the article be marked? | ||
− | < | + | <math>\textbf{(A)}\ 25.20 \qquad |
\textbf{(B)}\ 30.00 \qquad | \textbf{(B)}\ 30.00 \qquad | ||
\textbf{(C)}\ 33.60 \qquad | \textbf{(C)}\ 33.60 \qquad | ||
\textbf{(D)}\ 40.00 }\qquad | \textbf{(D)}\ 40.00 }\qquad | ||
− | \textbf{(E)}\ \text{none of these}} <math> | + | \textbf{(E)}\ \text{none of these}} </math> |
[[1964 AHSME Problems/Problem 9|Solution]] | [[1964 AHSME Problems/Problem 9|Solution]] | ||
Line 118: | Line 118: | ||
== Problem 10== | == Problem 10== | ||
− | Given a square side of length < | + | Given a square side of length <math>s</math>. On a diagonal as base a triangle with three unequal sides is constructed so that its area |
equals that of the square. The length of the altitude drawn to the base is: | equals that of the square. The length of the altitude drawn to the base is: | ||
− | < | + | <math>\textbf{(A)}\ s\sqrt{2} \qquad |
\textbf{(B)}\ s/\sqrt{2} \qquad | \textbf{(B)}\ s/\sqrt{2} \qquad | ||
\textbf{(C)}\ 2s \qquad | \textbf{(C)}\ 2s \qquad | ||
\textbf{(D)}\ 2\sqrt{s} }\qquad | \textbf{(D)}\ 2\sqrt{s} }\qquad | ||
− | \textbf{(E)}\ 2/\sqrt{s}} <math> | + | \textbf{(E)}\ 2/\sqrt{s}} </math> |
[[1964 AHSME Problems/Problem 10|Solution]] | [[1964 AHSME Problems/Problem 10|Solution]] | ||
Line 131: | Line 131: | ||
== Problem 11== | == Problem 11== | ||
− | Given < | + | Given <math>2^x=8^{y+1}</math> and <math>9^y=3^{x-9}</math>, find the value of <math>x+y</math> |
− | < | + | <math>\textbf{(A)}\ 18 \qquad |
\textbf{(B)}\ 21 \qquad | \textbf{(B)}\ 21 \qquad | ||
\textbf{(C)}\ 24 \qquad | \textbf{(C)}\ 24 \qquad | ||
\textbf{(D)}\ 27 }\qquad | \textbf{(D)}\ 27 }\qquad | ||
− | \textbf{(E)}\ 30 } <math> | + | \textbf{(E)}\ 30 } </math> |
[[1964 AHSME Problems/Problem 11|Solution]] | [[1964 AHSME Problems/Problem 11|Solution]] | ||
Line 143: | Line 143: | ||
== Problem 12== | == Problem 12== | ||
− | Which of the following is the negation of the statement: For all < | + | Which of the following is the negation of the statement: For all <math>x</math> of a certain set, <math>x^2>0</math>? |
− | < | + | <math>\textbf{(A)}\ \text{For all x}, x^2 < 0\qquad |
\textbf{(B)}\ \text{For all x}, x^2 \le 0\qquad | \textbf{(B)}\ \text{For all x}, x^2 \le 0\qquad | ||
− | \textbf{(C)}\ \text{For no x}, x^2>0\qquad | + | \textbf{(C)}\ \text{For no x}, x^2>0\qquad \\ |
\textbf{(D)}\ \text{For some x}, x^2>0 }\qquad | \textbf{(D)}\ \text{For some x}, x^2>0 }\qquad | ||
− | \textbf{(E)}\ \text{For some x}, x^2 \le 0}} <math> | + | \textbf{(E)}\ \text{For some x}, x^2 \le 0}} </math> |
[[1964 AHSME Problems/Problem 12|Solution]] | [[1964 AHSME Problems/Problem 12|Solution]] | ||
Line 155: | Line 155: | ||
== Problem 13== | == Problem 13== | ||
− | A circle is inscribed in a triangle with side lengths < | + | A circle is inscribed in a triangle with side lengths <math>8, 13</math>, and <math>17</math>. Let the segments of the side of length <math>8</math>, |
− | made by a point of tangency, be < | + | made by a point of tangency, be <math>r</math> and <math>s</math>, with <math>r<s</math>. What is the ratio <math>r:s</math>? |
− | < | + | <math>\textbf{(A)}\ 1:3 \qquad |
\textbf{(B)}\ 2:5 \qquad | \textbf{(B)}\ 2:5 \qquad | ||
\textbf{(C)}\ 1:2 \qquad | \textbf{(C)}\ 1:2 \qquad | ||
\textbf{(D)}\ 2:3 }\qquad | \textbf{(D)}\ 2:3 }\qquad | ||
− | \textbf{(E)}\ 3:4 } <math> | + | \textbf{(E)}\ 3:4 } </math> |
[[1964 AHSME Problems/Problem 13|Solution]] | [[1964 AHSME Problems/Problem 13|Solution]] | ||
Line 168: | Line 168: | ||
== Problem 14== | == Problem 14== | ||
− | A farmer bought < | + | A farmer bought <math>749</math> sheep. He sold <math>700</math> of them for the price paid for the <math>749</math> sheep. |
− | The remaining < | + | The remaining <math>49</math> sheep were sold at the same price per head as the other <math>700</math>. |
Based on the cost, the percent gain on the entire transaction is: | Based on the cost, the percent gain on the entire transaction is: | ||
− | < | + | <math>\textbf{(A)}\ 6.5 \qquad |
\textbf{(B)}\ 6.75 \qquad | \textbf{(B)}\ 6.75 \qquad | ||
\textbf{(C)}\ 7 \qquad | \textbf{(C)}\ 7 \qquad | ||
\textbf{(D)}\ 7.5 }\qquad | \textbf{(D)}\ 7.5 }\qquad | ||
− | \textbf{(E)}\ 8 } <math> | + | \textbf{(E)}\ 8 } </math> |
[[1964 AHSME Problems/Problem 14|Solution]] | [[1964 AHSME Problems/Problem 14|Solution]] | ||
Line 182: | Line 182: | ||
== Problem 15== | == Problem 15== | ||
− | A line through the point < | + | A line through the point <math>(-a,0)</math> cuts from the second quadrant a triangular region with area <math>T</math>. The equation of the line is: |
− | < | + | <math>\textbf{(A)}\ 2Tx+a^2y+2aT=0 \qquad |
\textbf{(B)}\ 2Tx-a^2y+2aT=0 \qquad | \textbf{(B)}\ 2Tx-a^2y+2aT=0 \qquad | ||
− | \textbf{(C)}\ 2Tx+a^2y-2aT=0 \qquad | + | \textbf{(C)}\ 2Tx+a^2y-2aT=0 \qquad \\ |
\textbf{(D)}\ 2Tx-a^2y-2aT=0 }\qquad | \textbf{(D)}\ 2Tx-a^2y-2aT=0 }\qquad | ||
− | \textbf{(E)}\ \text{none of these} } <math> | + | \textbf{(E)}\ \text{none of these} } </math> |
[[1964 AHSME Problems/Problem 15|Solution]] | [[1964 AHSME Problems/Problem 15|Solution]] | ||
Line 194: | Line 194: | ||
== Problem 16== | == Problem 16== | ||
− | Let < | + | Let <math>f(x)=x^2+3x+2</math> and let <math>S</math> be the set of integers <math>\{0, 1, 2, \dots , 25 \}</math>. |
− | The number of members < | + | The number of members <math>s</math> of <math>S</math> such that <math>f(s)</math> has remainder zero when divided by <math>6</math> is: |
− | < | + | <math>\textbf{(A)}\ 25\qquad |
\textbf{(B)}\ 22\qquad | \textbf{(B)}\ 22\qquad | ||
\textbf{(C)}\ 21\qquad | \textbf{(C)}\ 21\qquad | ||
\textbf{(D)}\ 18 }\qquad | \textbf{(D)}\ 18 }\qquad | ||
− | \textbf{(E)}\ 17 } <math> | + | \textbf{(E)}\ 17 } </math> |
[[1964 AHSME Problems/Problem 16|Solution]] | [[1964 AHSME Problems/Problem 16|Solution]] | ||
Line 207: | Line 207: | ||
== Problem 17== | == Problem 17== | ||
− | Given the distinct points < | + | Given the distinct points <math>P(x_1, y_1), Q(x_2, y_2)</math> and <math>R(x_1+x_2, y_1+y_2)</math>. |
− | Line segments are drawn connecting these points to each other and to the origin < | + | Line segments are drawn connecting these points to each other and to the origin <math>0</math>. |
− | Of the three possibilities: (1) parallelogram (2) straight line (3) trapezoid, figure < | + | Of the three possibilities: (1) parallelogram (2) straight line (3) trapezoid, figure <math>OPRQ</math>, |
− | depending upon the location of the points < | + | depending upon the location of the points <math>P, Q</math>, and <math>R</math>, can be: |
− | < | + | <math>\textbf{(A)}\ \text{(1) only}\qquad |
\textbf{(B)}\ \text{(2) only}\qquad | \textbf{(B)}\ \text{(2) only}\qquad | ||
\textbf{(C)}\ \text{(3) only}\qquad | \textbf{(C)}\ \text{(3) only}\qquad | ||
\textbf{(D)}\ \text{(1) or (2) only}\qquad | \textbf{(D)}\ \text{(1) or (2) only}\qquad | ||
− | \textbf{(E)}\ \text{all three} <math> | + | \textbf{(E)}\ \text{all three} </math> |
[[1964 AHSME Problems/Problem 17|Solution]] | [[1964 AHSME Problems/Problem 17|Solution]] | ||
Line 222: | Line 222: | ||
== Problem 18== | == Problem 18== | ||
− | Let < | + | Let <math>n</math> be the number of pairs of values of <math>b</math> and <math>c</math> such that <math>3x+by+c=0</math> and <math>cx-2y+12=0</math> have the same graph. Then <math>n</math> is: |
− | < | + | <math>\textbf{(A)}\ 0\qquad |
\textbf{(B)}\ 1\qquad | \textbf{(B)}\ 1\qquad | ||
\textbf{(C)}\ 2\qquad | \textbf{(C)}\ 2\qquad | ||
\textbf{(D)}\ \text{finite but more than 2}\qquad | \textbf{(D)}\ \text{finite but more than 2}\qquad | ||
− | \textbf{(E)}\ \infty <math> | + | \textbf{(E)}\ \infty </math> |
[[1964 AHSME Problems/Problem 18|Solution]] | [[1964 AHSME Problems/Problem 18|Solution]] | ||
Line 234: | Line 234: | ||
== Problem 19== | == Problem 19== | ||
− | If < | + | If <math>2x-3y-z=0</math> and <math>x+3y-14z=0, z \neq 0</math>, the numerical value of <math>\frac{x^2+3xy}{y^2+z^2}</math> is: |
− | < | + | <math>\textbf{(A)}\ 7\qquad |
\textbf{(B)}\ 2\qquad | \textbf{(B)}\ 2\qquad | ||
\textbf{(C)}\ 0\qquad | \textbf{(C)}\ 0\qquad | ||
\textbf{(D)}\ -20/17\qquad | \textbf{(D)}\ -20/17\qquad | ||
− | \textbf{(E)}\ -2 <math> | + | \textbf{(E)}\ -2 </math> |
[[1964 AHSME Problems/Problem 19|Solution]] | [[1964 AHSME Problems/Problem 19|Solution]] | ||
Line 246: | Line 246: | ||
== Problem 20== | == Problem 20== | ||
− | The sum of the numerical coefficients of all the terms in the expansion of < | + | The sum of the numerical coefficients of all the terms in the expansion of <math>(x-2y)^{18}</math> is: |
− | < | + | <math>\textbf{(A)}\ 0\qquad |
\textbf{(B)}\ 1\qquad | \textbf{(B)}\ 1\qquad | ||
\textbf{(C)}\ 19\qquad | \textbf{(C)}\ 19\qquad | ||
\textbf{(D)}\ -1\qquad | \textbf{(D)}\ -1\qquad | ||
− | \textbf{(E)}\ -19 <math> | + | \textbf{(E)}\ -19 </math> |
[[1964 AHSME Problems/Problem 20|Solution]] | [[1964 AHSME Problems/Problem 20|Solution]] | ||
Line 258: | Line 258: | ||
== Problem 21== | == Problem 21== | ||
− | If < | + | If <math>\log_{b^2}x+\log_{x^2}b=1, b>0, b \neq 1, x \neq 1</math>, then <math>x</math> equals: |
− | < | + | <math>\textbf{(A)}\ 1/b^2 \qquad |
\textbf{(B)}\ 1/b \qquad | \textbf{(B)}\ 1/b \qquad | ||
\textbf{(C)}\ b^2 \qquad | \textbf{(C)}\ b^2 \qquad | ||
\textbf{(D)}\ b \qquad | \textbf{(D)}\ b \qquad | ||
− | \textbf{(E)}\ \sqrt{b} <math> | + | \textbf{(E)}\ \sqrt{b} </math> |
[[1964 AHSME Problems/Problem 21|Solution]] | [[1964 AHSME Problems/Problem 21|Solution]] | ||
Line 270: | Line 270: | ||
== Problem 22== | == Problem 22== | ||
− | Given parallelogram < | + | Given parallelogram <math>ABCD</math> with <math>E</math> the midpoint of diagonal <math>BD</math>. Point <math>E</math> is connected to a point <math>F</math> in <math>DA</math> so that |
− | < | + | <math>DF=\frac{1}{3}DA</math>. What is the ratio of the area of <math>\triangle DFE</math> to the area of quadrilateral <math>ABEF</math>? |
− | < | + | <math>\textbf{(A)}\ 1:2 \qquad |
\textbf{(B)}\ 1:3 \qquad | \textbf{(B)}\ 1:3 \qquad | ||
\textbf{(C)}\ 1:5 \qquad | \textbf{(C)}\ 1:5 \qquad | ||
\textbf{(D)}\ 1:6 \qquad | \textbf{(D)}\ 1:6 \qquad | ||
− | \textbf{(E)}\ 1:7 <math> | + | \textbf{(E)}\ 1:7 </math> |
[[1964 AHSME Problems/Problem 22|Solution]] | [[1964 AHSME Problems/Problem 22|Solution]] | ||
Line 283: | Line 283: | ||
== Problem 23== | == Problem 23== | ||
− | Two numbers are such that their difference, their sum, and their product are to one another as < | + | Two numbers are such that their difference, their sum, and their product are to one another as <math>1:7:24</math>. The product of the two numbers is: |
− | < | + | <math>\textbf{(A)}\ 6\qquad |
\textbf{(B)}\ 12\qquad | \textbf{(B)}\ 12\qquad | ||
\textbf{(C)}\ 24\qquad | \textbf{(C)}\ 24\qquad | ||
\textbf{(D)}\ 48\qquad | \textbf{(D)}\ 48\qquad | ||
− | \textbf{(E)}\ 96 <math> | + | \textbf{(E)}\ 96 </math> |
[[1964 AHSME Problems/Problem 23|Solution]] | [[1964 AHSME Problems/Problem 23|Solution]] | ||
Line 295: | Line 295: | ||
== Problem 24== | == Problem 24== | ||
− | Let < | + | Let <math>y=(x-a)^2+(x-b)^2, a, b</math> constants. For what value of <math>x</math> is <math>y</math> a minimum? |
− | < | + | <math>\textbf{(A)}\ \frac{a+b}{2} \qquad |
\textbf{(B)}\ a+b \qquad | \textbf{(B)}\ a+b \qquad | ||
\textbf{(C)}\ \sqrt{ab} \qquad | \textbf{(C)}\ \sqrt{ab} \qquad | ||
\textbf{(D)}\ \sqrt{\frac{a^2+b^2}{2}}\qquad | \textbf{(D)}\ \sqrt{\frac{a^2+b^2}{2}}\qquad | ||
− | \textbf{(E)}\ \frac{a+b}{2ab} <math> | + | \textbf{(E)}\ \frac{a+b}{2ab} </math> |
[[1964 AHSME Problems/Problem 24|Solution]] | [[1964 AHSME Problems/Problem 24|Solution]] | ||
Line 307: | Line 307: | ||
== Problem 25== | == Problem 25== | ||
− | The set of values of < | + | The set of values of <math>m</math> for which <math>x^2+3xy+x+my-m</math> has two factors, with integer coefficients, which are linear in <math>x</math> and <math>y</math>, is precisely: |
− | < | + | <math>\textbf{(A)}\ 0, 12, -12\qquad |
\textbf{(B)}\ 0, 12\qquad | \textbf{(B)}\ 0, 12\qquad | ||
\textbf{(C)}\ 12, -12\qquad | \textbf{(C)}\ 12, -12\qquad | ||
\textbf{(D)}\ 12\qquad | \textbf{(D)}\ 12\qquad | ||
− | \textbf{(E)}\ 0 <math> | + | \textbf{(E)}\ 0 </math> |
[[1964 AHSME Problems/Problem 25|Solution]] | [[1964 AHSME Problems/Problem 25|Solution]] | ||
Line 319: | Line 319: | ||
== Problem 26== | == Problem 26== | ||
− | In a ten-mile race < | + | In a ten-mile race <math>\textit{First}</math> beats <math>\textit{Second}</math> by <math>2</math> miles and |
− | If the runners maintain constant speeds throughout the race, by how many miles does < | + | <math>\textit{First}</math> beats <math>\textit{Third}</math> by <math>4</math> miles. |
+ | If the runners maintain constant speeds throughout the race, | ||
+ | by how many miles does <math>\textit{Second}</math> beat <math>\textit{Third}</math>? | ||
− | < | + | <math>\textbf{(A)}\ 2\qquad |
\textbf{(B)}\ 2\frac{1}{4}\qquad | \textbf{(B)}\ 2\frac{1}{4}\qquad | ||
\textbf{(C)}\ 2\frac{1}{2}\qquad | \textbf{(C)}\ 2\frac{1}{2}\qquad | ||
\textbf{(D)}\ 2\frac{3}{4}\qquad | \textbf{(D)}\ 2\frac{3}{4}\qquad | ||
− | \textbf{(E)}\ 3 <math> | + | \textbf{(E)}\ 3 </math> |
[[1964 AHSME Problems/Problem 26|Solution]] | [[1964 AHSME Problems/Problem 26|Solution]] | ||
Line 332: | Line 334: | ||
== Problem 27== | == Problem 27== | ||
− | If < | + | If <math>x</math> is a real number and <math>|x-4|+|x-3|<a</math> where <math>a>0</math>, then: |
− | < | + | <math>\textbf{(A)}\ 0<a<.01\qquad |
\textbf{(B)}\ .01<a<1 \qquad | \textbf{(B)}\ .01<a<1 \qquad | ||
− | \textbf{(C)}\ 0<a<1\qquad | + | \textbf{(C)}\ 0<a<1\qquad \\ |
\textbf{(D)}\ 0<a \le 1\qquad | \textbf{(D)}\ 0<a \le 1\qquad | ||
− | \textbf{(E)}\ a>1 <math> | + | \textbf{(E)}\ a>1 </math> |
[[1964 AHSME Problems/Problem 27|Solution]] | [[1964 AHSME Problems/Problem 27|Solution]] | ||
Line 344: | Line 346: | ||
== Problem 28== | == Problem 28== | ||
− | The sum of < | + | The sum of <math>n</math> terms of an arithmetic progression is <math>153</math>, and the common difference is <math>2</math>. |
− | If the first term is an integer, and < | + | If the first term is an integer, and <math>n>1</math>, then the number of possible values for <math>n</math> is: |
− | < | + | <math>\textbf{(A)}\ 2\qquad |
\textbf{(B)}\ 3\qquad | \textbf{(B)}\ 3\qquad | ||
\textbf{(C)}\ 4\qquad | \textbf{(C)}\ 4\qquad | ||
\textbf{(D)}\ 5\qquad | \textbf{(D)}\ 5\qquad | ||
− | \textbf{(E)}\ 6 <math> | + | \textbf{(E)}\ 6 </math> |
[[1964 AHSME Problems/Problem 28|Solution]] | [[1964 AHSME Problems/Problem 28|Solution]] | ||
Line 357: | Line 359: | ||
== Problem 29== | == Problem 29== | ||
− | In this figure < | + | In this figure <math>\angle RFS = \angle FDR, FD = 4</math> inches, <math>DR = 6</math> inches, <math>FR = 5</math> inches, <math>FS = 7\tfrac{1}{2}</math> inches. |
− | The length of </math> | + | The length of <math>RS</math>, in inches, is: |
<asy> | <asy> | ||
Line 379: | Line 381: | ||
<math>\textbf{(A)}\ \text{undetermined} \qquad | <math>\textbf{(A)}\ \text{undetermined} \qquad | ||
\textbf{(B)}\ 4\qquad | \textbf{(B)}\ 4\qquad | ||
− | \textbf{(C)}\ 5\ | + | \textbf{(C)}\ 5\tfrac{1}{2} \qquad |
\textbf{(D)}\ 6\qquad | \textbf{(D)}\ 6\qquad | ||
− | \textbf{(E)}\ 6\ | + | \textbf{(E)}\ 6\tfrac{1}{4} </math> |
[[1964 AHSME Problems/Problem 29|Solution]] | [[1964 AHSME Problems/Problem 29|Solution]] | ||
Line 417: | Line 419: | ||
\textbf{(B)}\ a+b+c+d\text{ must equal zero }\qquad | \textbf{(B)}\ a+b+c+d\text{ must equal zero }\qquad | ||
\textbf{(C)}\ \text{either }a=c\text{ or }a+b+c+d=0,\text{ or both} \qquad | \textbf{(C)}\ \text{either }a=c\text{ or }a+b+c+d=0,\text{ or both} \qquad | ||
− | \textbf{(D)}\ a+b+c+d\neq 0\text{ if }a=c \qquad | + | \textbf{(D)}\ a+b+c+d\neq 0\text{ if }a=c \qquad \\ |
\textbf{(E)}\ a(b+c+d)=c(a+b+d) </math> | \textbf{(E)}\ a(b+c+d)=c(a+b+d) </math> | ||
Line 456: | Line 458: | ||
<math>\textbf{(A)}\ 1+i\qquad | <math>\textbf{(A)}\ 1+i\qquad | ||
\textbf{(B)}\ \frac{1}{2}(n+2) \qquad | \textbf{(B)}\ \frac{1}{2}(n+2) \qquad | ||
− | \textbf{(C)}\ \frac{1}{2}(n+2-ni) \qquad | + | \textbf{(C)}\ \frac{1}{2}(n+2-ni) \qquad \\ |
\textbf{(D)}\ \frac{1}{2}[(n+1)(1-i)+2]\qquad | \textbf{(D)}\ \frac{1}{2}[(n+1)(1-i)+2]\qquad | ||
\textbf{(E)}\ \frac{1}{8}(n^2+8-4ni) </math> | \textbf{(E)}\ \frac{1}{8}(n^2+8-4ni) </math> | ||
Line 565: | Line 567: | ||
== Problem 40== | == Problem 40== | ||
− | A watch loses <math>2\ | + | A watch loses <math>2\tfrac{1}{2}</math> minutes per day. It is set right at <math>1</math> P.M. on March <math>15</math>. |
Let <math>n</math> be the positive correction, in minutes, to be added to the time shown by the watch at a given time. | Let <math>n</math> be the positive correction, in minutes, to be added to the time shown by the watch at a given time. | ||
When the watch shows <math>9</math> A.M. on March <math>21</math>, <math>n</math> equals: | When the watch shows <math>9</math> A.M. on March <math>21</math>, <math>n</math> equals: |
Revision as of 14:35, 9 October 2014
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 Problem 26
- 27 Problem 27
- 28 Problem 28
- 29 Problem 29
- 30 Problem 30
- 31 Problem 31
- 32 Problem 32
- 33 Problem 33
- 34 Problem 34
- 35 Problem 35
- 36 Problem 36
- 37 Problem 37
- 38 Problem 38
- 39 Problem 39
- 40 Problem 40
Problem 1
What is the value of ?
$\textbf{(A)}\ \log_{10}50 \qquad \textbf{(B)}\ 25\qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 2}\qquad \textbf{(E)}\ 1 }$ (Error compiling LaTeX. Unknown error_msg)
Problem 2
The graph of is:
$\textbf{(A)}\ \text{a parabola} \qquad \textbf{(B)}\ \text{an ellipse} \qquad \textbf{(C)}\ \text{a pair of straight lines}\qquad \\ \textbf{(D)}\ \text{a point}}\qquad \textbf{(E)}\ \text{None of these}}$ (Error compiling LaTeX. Unknown error_msg)
Problem 3
When a positive integer is divided by a positive integer
, the quotient is
and the remainder is
, where
and
are integers.
What is the remainder when
is divided by
?
$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 2u \qquad \textbf{(C)}\ 3u \qquad \textbf{(D)}\ v }\qquad \textbf{(E)}\ 2v }$ (Error compiling LaTeX. Unknown error_msg)
Problem 4
The expression
where and
, is equivalent to:
$\textbf{(A)}\ \frac{x^2-y^2}{xy}\qquad \textbf{(B)}\ \frac{x^2-y^2}{2xy}\qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ \frac{x^2+y^2}{xy}\qquad \textbf{(E)}\ \frac{x^2+y^2}{2xy}}$ (Error compiling LaTeX. Unknown error_msg)
Problem 5
If varies directly as
, and if
when
, the value of
when
is:
$\textbf{(A)}\ -16} \qquad \textbf{(B)}\ -4 \qquad \textbf{(C)}\ -2 \qquad \textbf{(D)}\ 4k, k= \pm1, \pm2, \dots} \qquad \\ \textbf{(E)}\ 16k, k=\pm1,\pm2,\dots }$ (Error compiling LaTeX. Unknown error_msg)
Problem 6
If are in geometric progression, the fourth term is:
$\textbf{(A)}\ -27 \qquad \textbf{(B)}\ -13\frac{1}{2} \qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\frac{1}{2}}\qquad \textbf{(E)}\ 27 }$ (Error compiling LaTeX. Unknown error_msg)
Problem 7
Let n be the number of real values of for which the roots of
are equal. Then n equals:
Problem 8
The smaller root of the equation
is:
$\textbf{(A)}\ -\frac{3}{4}\qquad \textbf{(B)}\ \frac{1}{2}\qquad \textbf{(C)}\ \frac{5}{8}\qquad \textbf{(D)}\ \frac{3}{4}}\qquad \textbf{(E)}\ 1 }$ (Error compiling LaTeX. Unknown error_msg)
Problem 9
A jobber buys an article at $24 less %. He then wishes to sell the article at a gain of
% of his cost
after allowing a 20% discount on his marked price. At what price, in dollars, should the article be marked?
$\textbf{(A)}\ 25.20 \qquad \textbf{(B)}\ 30.00 \qquad \textbf{(C)}\ 33.60 \qquad \textbf{(D)}\ 40.00 }\qquad \textbf{(E)}\ \text{none of these}}$ (Error compiling LaTeX. Unknown error_msg)
Problem 10
Given a square side of length . On a diagonal as base a triangle with three unequal sides is constructed so that its area
equals that of the square. The length of the altitude drawn to the base is:
$\textbf{(A)}\ s\sqrt{2} \qquad \textbf{(B)}\ s/\sqrt{2} \qquad \textbf{(C)}\ 2s \qquad \textbf{(D)}\ 2\sqrt{s} }\qquad \textbf{(E)}\ 2/\sqrt{s}}$ (Error compiling LaTeX. Unknown error_msg)
Problem 11
Given and
, find the value of
$\textbf{(A)}\ 18 \qquad \textbf{(B)}\ 21 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 27 }\qquad \textbf{(E)}\ 30 }$ (Error compiling LaTeX. Unknown error_msg)
Problem 12
Which of the following is the negation of the statement: For all of a certain set,
?
$\textbf{(A)}\ \text{For all x}, x^2 < 0\qquad \textbf{(B)}\ \text{For all x}, x^2 \le 0\qquad \textbf{(C)}\ \text{For no x}, x^2>0\qquad \\ \textbf{(D)}\ \text{For some x}, x^2>0 }\qquad \textbf{(E)}\ \text{For some x}, x^2 \le 0}}$ (Error compiling LaTeX. Unknown error_msg)
Problem 13
A circle is inscribed in a triangle with side lengths , and
. Let the segments of the side of length
,
made by a point of tangency, be
and
, with
. What is the ratio
?
$\textbf{(A)}\ 1:3 \qquad \textbf{(B)}\ 2:5 \qquad \textbf{(C)}\ 1:2 \qquad \textbf{(D)}\ 2:3 }\qquad \textbf{(E)}\ 3:4 }$ (Error compiling LaTeX. Unknown error_msg)
Problem 14
A farmer bought sheep. He sold
of them for the price paid for the
sheep.
The remaining
sheep were sold at the same price per head as the other
.
Based on the cost, the percent gain on the entire transaction is:
$\textbf{(A)}\ 6.5 \qquad \textbf{(B)}\ 6.75 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 7.5 }\qquad \textbf{(E)}\ 8 }$ (Error compiling LaTeX. Unknown error_msg)
Problem 15
A line through the point cuts from the second quadrant a triangular region with area
. The equation of the line is:
$\textbf{(A)}\ 2Tx+a^2y+2aT=0 \qquad \textbf{(B)}\ 2Tx-a^2y+2aT=0 \qquad \textbf{(C)}\ 2Tx+a^2y-2aT=0 \qquad \\ \textbf{(D)}\ 2Tx-a^2y-2aT=0 }\qquad \textbf{(E)}\ \text{none of these} }$ (Error compiling LaTeX. Unknown error_msg)
Problem 16
Let and let
be the set of integers
.
The number of members
of
such that
has remainder zero when divided by
is:
$\textbf{(A)}\ 25\qquad \textbf{(B)}\ 22\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 18 }\qquad \textbf{(E)}\ 17 }$ (Error compiling LaTeX. Unknown error_msg)
Problem 17
Given the distinct points and
.
Line segments are drawn connecting these points to each other and to the origin
.
Of the three possibilities: (1) parallelogram (2) straight line (3) trapezoid, figure
,
depending upon the location of the points
, and
, can be:
Problem 18
Let be the number of pairs of values of
and
such that
and
have the same graph. Then
is:
Problem 19
If and
, the numerical value of
is:
Problem 20
The sum of the numerical coefficients of all the terms in the expansion of is:
Problem 21
If , then
equals:
Problem 22
Given parallelogram with
the midpoint of diagonal
. Point
is connected to a point
in
so that
. What is the ratio of the area of
to the area of quadrilateral
?
Problem 23
Two numbers are such that their difference, their sum, and their product are to one another as . The product of the two numbers is:
Problem 24
Let constants. For what value of
is
a minimum?
Problem 25
The set of values of for which
has two factors, with integer coefficients, which are linear in
and
, is precisely:
Problem 26
In a ten-mile race beats
by
miles and
beats
by
miles.
If the runners maintain constant speeds throughout the race,
by how many miles does
beat
?
Problem 27
If is a real number and
where
, then:
Problem 28
The sum of terms of an arithmetic progression is
, and the common difference is
.
If the first term is an integer, and
, then the number of possible values for
is:
Problem 29
In this figure inches,
inches,
inches,
inches.
The length of
, in inches, is:
Problem 30
If , the larger root minus the smaller root is:
Problem 31
Let .
Then
, expressed in terms of
, equals:
Problem 32
If , then:
Problem 33
is a point interior to rectangle
and such that
inches,
inches, and
inches. Then
, in inches, equals:
Problem 34
If is a multiple of
, the sum
, where
, equals:
Problem 35
The sides of a triangle are of lengths . The altitudes of the triangle meet at point
.
If
is the altitude to the side length
, what is the ratio
?
Problem 36
In this figure the radius of the circle is equal to the altitude of the equilateral triangle .
The circle is made to roll along the side
, remaining tangent to it at a variable point
and intersecting lines
and
in variable points
and
, respectively.
Let
be the number of degrees in arc
. Then
, for all permissible positions of the circle:
Problem 37
Given two positive number such that
, let
be their arithmetic mean and let
be their positive geometric mean.
Then
minus
is always less than:
Problem 38
The sides and
of
are respectively of lengths
inches, and
inches. The median
is
inches.
Then
, in inches, is:
Problem 39
The magnitudes of the sides of are
, and
, as shown, with
.
Through interior point
and the vertices
, lines are drawn meeting the opposite sides in
, respectively.
Let
. Then, for all positions of point
,
is less than:
Problem 40
A watch loses minutes per day. It is set right at
P.M. on March
.
Let
be the positive correction, in minutes, to be added to the time shown by the watch at a given time.
When the watch shows
A.M. on March
,
equals: