Difference between revisions of "2002 AMC 10A Problems/Problem 25"
(→Solution 3) |
(→Solution) |
||
| Line 81: | Line 81: | ||
Now the area of the original trapezoid is <math>\frac{(AB+CD)\cdot CC'}2 = \frac{91 \cdot 60}{13 \cdot 2} = 7\cdot 30 = \boxed{210}</math>. | Now the area of the original trapezoid is <math>\frac{(AB+CD)\cdot CC'}2 = \frac{91 \cdot 60}{13 \cdot 2} = 7\cdot 30 = \boxed{210}</math>. | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
== See also == | == See also == | ||
Revision as of 00:56, 26 January 2016
Problem
In trapezoid
with bases
and
, we have
,
,
, and
. The area of
is
Solution
Solution 1
It shouldn't be hard to use trigonometry to bash this and find the height, but there is a much easier way. Extend
and
to meet at point
:
![[asy] size(250); defaultpen(0.8); pair A=(0,0), B = (52,0), C=(52-144/13,60/13), D=(25/13,60/13), F=(100/13,240/13); draw(A--B--C--D--cycle); draw(D--F--C,dashed); label("\(A\)",A,S); label("\(B\)",B,S); label("\(C\)",C,NE); label("\(D\)",D,W); label("\(E\)",F,N); label("39",(C+D)/2,N); label("52",(A+B)/2,S); label("5",(A+D)/2,E); label("12",(B+C)/2,WSW); [/asy]](http://latex.artofproblemsolving.com/0/8/f/08fd9a3001f04eb9624f966ea35af9f5984fd7a8.png)
Since
we have
, with the ratio of proportionality being
. Thus
So the sides of
are
, which we recognize to be a
right triangle. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared),
Solution 2
Draw altitudes from points
and
:
![[asy] unitsize(0.2cm); defaultpen(0.8); pair A=(0,0), B = (52,0), C=(52-144/13,60/13), D=(25/13,60/13), E=(52-144/13,0), F=(25/13,0); draw(A--B--C--D--cycle); draw(C--E,dashed); draw(D--F,dashed); label("\(A\)",A,SW); label("\(B\)",B,S); label("\(C\)",C,NE); label("\(D\)",D,N); label("\(D'\)",F,SSE); label("\(C'\)",E,S); label("39",(C+D)/2,N); label("52",(A+B)/2,S); label("5",(A+D)/2,W); label("12",(B+C)/2,ENE); [/asy]](http://latex.artofproblemsolving.com/2/5/5/255b3ee5b7acb3f4baca3b52720811aa66cba79e.png)
Translate the triangle
so that
coincides with
. We get the following triangle:
![[asy] unitsize(0.2cm); defaultpen(0.8); pair A=(0,0), B = (13,0), C=(25/13,60/13), F=(25/13,0); draw(A--B--C--cycle); draw(C--F,dashed); label("\(A'\)",A,SW); label("\(B\)",B,S); label("\(C\)",C,N); label("\(C'\)",F,SE); label("5",(A+C)/2,W); label("12",(B+C)/2,ENE); [/asy]](http://latex.artofproblemsolving.com/a/e/9/ae9e06d7e09ef1c45cb1eb1354f20938e46480b6.png)
The length of
in this triangle is equal to the length of the original
, minus the length of
.
Thus
.
Therefore
is a well-known
right triangle. Its area is
, and therefore its altitude
is
.
Now the area of the original trapezoid is
.
See also
| 2002 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 24 |
Followed by Last problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.