Difference between revisions of "2017 USAJMO Problems/Problem 3"
(→Solution) |
S0larPh03nix (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | (<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math> | + | (<math>*</math>) Let <math>ABC</math> be an equilateral triangle and let <math>P</math> be a point on its circumcircle. Let lines <math>PA</math> and <math>BC</math> intersect at <math>D</math>; let lines <math>PB</math> and <math>CA</math> intersect at <math>E</math>; and let lines <math>PC</math> and <math>AB</math> intersect at <math>F</math>. Prove that the area of triangle <math>DEF</math> is twice that of triangle <math>ABC</math>. |
<asy> | <asy> |
Revision as of 16:44, 21 April 2017
Problem
() Let
be an equilateral triangle and let
be a point on its circumcircle. Let lines
and
intersect at
; let lines
and
intersect at
; and let lines
and
intersect at
. Prove that the area of triangle
is twice that of triangle
.
Solution
WLOG, let . Let
, and
. After some angle chasing, we find that
and
. Therefore,
~
.
Lemma 1: If , then
.
This lemma results directly from the fact that
~
;
, or
.
Lemma 2: .
We see that
, as desired.
Lemma 3: .
We see that
However, after some angle chasing and by the Law of Sines in
, we have
, or
, which implies the result.
By the area lemma, we have and
.
We see that . Thus, it suffices to show that
, or
. Rearranging, we find this to be equivalent to
, which is Lemma 3, so the result has been proven.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
See also
2017 USAJMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |