Difference between revisions of "1984 AIME Problems/Problem 1"
(→Solution 3) |
m (→Solution 3) |
||
| Line 26: | Line 26: | ||
=== Solution 3 === | === Solution 3 === | ||
| − | A better approach to this problem is to notice that from <math>a_{1}+a_{2}+\cdots a_{98}=137</math> that each element with an odd subscript is 1 from each element with an even subscript. Thus, we note that the sum of the odd elements must be <math>\frac{137-49}{2}</math>. Thus, if we want to find the sum of all of the even elements we simply add <math>49</math> common differences to this giving us <math>\frac{137-49}{2}+49=\fbox{ | + | A better approach to this problem is to notice that from <math>a_{1}+a_{2}+\cdots a_{98}=137</math> that each element with an odd subscript is 1 from each element with an even subscript. Thus, we note that the sum of the odd elements must be <math>\frac{137-49}{2}</math>. Thus, if we want to find the sum of all of the even elements we simply add <math>49</math> common differences to this giving us <math>\frac{137-49}{2}+49=\fbox{093}</math>. |
== See also == | == See also == | ||
Revision as of 10:10, 18 November 2017
Problem
Find the value of
if
,
,
is an arithmetic progression with common difference 1, and
.
Solution
Solution 1
One approach to this problem is to apply the formula for the sum of an arithmetic series in order to find the value of
, then use that to calculate
and sum another arithmetic series to get our answer.
A somewhat quicker method is to do the following: for each
, we have
. We can substitute this into our given equation to get
. The left-hand side of this equation is simply
, so our desired value is
.
Solution 2
If
is the first term, then
can be rewritten as:
Our desired value is
so this is:
which is
. So, from the first equation, we know
. So, the final answer is:
.
Solution 3
A better approach to this problem is to notice that from
that each element with an odd subscript is 1 from each element with an even subscript. Thus, we note that the sum of the odd elements must be
. Thus, if we want to find the sum of all of the even elements we simply add
common differences to this giving us
.
See also
| 1984 AIME (Problems • Answer Key • Resources) | ||
| Preceded by First Question |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||