Difference between revisions of "2014 AIME I Problems/Problem 13"
m (→Solution) |
m (→Solution) |
||
| Line 32: | Line 32: | ||
== Solution == | == Solution == | ||
| − | Notice that <math>269+411=275+405</math>. This means <math>\overline{EG}</math> passes through the | + | Notice that <math>269+411=275+405</math>. This means <math>\overline{EG}</math> passes through the center of the square. |
| − | Draw <math>\overline{IJ} \parallel \overline{HF}</math> with <math>I</math> on <math>\overline{AD}</math>, <math>J</math> on <math>\overline{BC}</math> such that <math>\overline{IJ}</math> and <math>\overline{EG}</math> intersects at the | + | Draw <math>\overline{IJ} \parallel \overline{HF}</math> with <math>I</math> on <math>\overline{AD}</math>, <math>J</math> on <math>\overline{BC}</math> such that <math>\overline{IJ}</math> and <math>\overline{EG}</math> intersects at the center of the square <math>O</math>. |
Let the area of the square be <math>1360a</math>. Then the area of <math>HPOI=71a</math> and the area of <math>FPOJ=65a</math>. This is because <math>\overline{HF}</math> is perpendicular to <math>\overline{EG}</math> (given in the problem), so <math>\overline{IJ}</math> is also perpendicular to <math>\overline{EG}</math>. These two orthogonal lines also pass through the center of the square, so they split it into 4 congruent quadrilaterals. | Let the area of the square be <math>1360a</math>. Then the area of <math>HPOI=71a</math> and the area of <math>FPOJ=65a</math>. This is because <math>\overline{HF}</math> is perpendicular to <math>\overline{EG}</math> (given in the problem), so <math>\overline{IJ}</math> is also perpendicular to <math>\overline{EG}</math>. These two orthogonal lines also pass through the center of the square, so they split it into 4 congruent quadrilaterals. | ||
Revision as of 13:56, 19 March 2018
Contents
Problem 13
On square
, points
, and
lie on sides
and
respectively, so that
and
. Segments
and
intersect at a point
, and the areas of the quadrilaterals
and
are in the ratio
Find the area of square
.
Solution
Notice that
. This means
passes through the center of the square.
Draw
with
on
,
on
such that
and
intersects at the center of the square
.
Let the area of the square be
. Then the area of
and the area of
. This is because
is perpendicular to
(given in the problem), so
is also perpendicular to
. These two orthogonal lines also pass through the center of the square, so they split it into 4 congruent quadrilaterals.
Let the side length of the square be
.
Draw
and intersects
at
.
.
The area of
, so the area of
.
Let
. Then
Consider the area of
.
Thus,
.
Solving
, we get
.
Therefore, the area of
Lazy Solution
, a multiple of
. In addition,
, which is
.
Therefore, we suspect the square of the "hypotenuse" of a right triangle, corresponding to
and
must be a multiple of
. All of these triples are primitive:
The sides of the square can only equal the longer leg, or else the lines would have to extend outside of the square. Substituting
:
Thus,
is the only valid answer.
See also
| 2014 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.