Difference between revisions of "2002 AMC 10B Problems/Problem 2"
Iambiofanat (talk | contribs) (→Problem) |
|||
| Line 3: | Line 3: | ||
For the nonzero numbers a, b, and c, define | For the nonzero numbers a, b, and c, define | ||
| − | <math>(a,b,c)=\frac{abc}{a+b+c}</math> | + | <math>D(a,b,c)=\frac{abc}{a+b+c}</math> |
| − | Find <math>(2,4,6)</math>. | + | Find <math>D(2,4,6)</math>. |
<math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24 </math> | <math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24 </math> | ||
Revision as of 11:06, 1 October 2018
Problem
For the nonzero numbers a, b, and c, define
Find
.
Solution
See Also
| 2002 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.