Difference between revisions of "2019 USAJMO Problems/Problem 2"
Stormersyle (talk | contribs) (→Solution) |
(Add new solution, fix incorrect example of f and g in Solution 1) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
Let <math>\mathbb Z</math> be the set of all integers. Find all pairs of integers <math>(a,b)</math> for which there exist functions <math>f:\mathbb Z\rightarrow\mathbb Z</math> and <math>g:\mathbb Z\rightarrow\mathbb Z</math> satisfying <cmath>f(g(x))=x+a\quad\text{and}\quad g(f(x))=x+b</cmath> for all integers <math>x</math>. | Let <math>\mathbb Z</math> be the set of all integers. Find all pairs of integers <math>(a,b)</math> for which there exist functions <math>f:\mathbb Z\rightarrow\mathbb Z</math> and <math>g:\mathbb Z\rightarrow\mathbb Z</math> satisfying <cmath>f(g(x))=x+a\quad\text{and}\quad g(f(x))=x+b</cmath> for all integers <math>x</math>. | ||
− | ==Solution== | + | ==Solution 1== |
− | <math>f</math> and <math>g</math> are surjective because <math>x+a</math> and <math>x+b</math> can take on any integral value, and by evaluating the parentheses in different order, we find <math>f(g(f(x)))=f(x+b)=f(x)+a</math> and <math>g(f(g(x)))=g(x+a)=g(x)+b</math>. | + | We claim that the answer is <math>|a|=|b|</math>. |
− | + | ||
− | For <math>a=b</math> let <math>f(x)=g(x)=x+ | + | Proof: |
+ | <math>f</math> and <math>g</math> are surjective because <math>x+a</math> and <math>x+b</math> can take on any integral value, and by evaluating the parentheses in different order, we find <math>f(g(f(x)))=f(x+b)=f(x)+a</math> and <math>g(f(g(x)))=g(x+a)=g(x)+b</math>. We see that if <math>a=0</math> then <math>g(x)=g(x)+b</math> to <math>b=0</math> as well, so similarly if <math>b=0</math> then <math>a=0</math>, so now assume <math>a, b\ne 0</math>. | ||
+ | |||
+ | We see that if <math>x=|b|n</math> then <math>f(x)\equiv f(0) \pmod{|a|}</math>, if <math>x=|b|n+1</math> then <math>f(x)\equiv f(1)\pmod{|a|}</math>, if <math>x=|b|n+2</math> then <math>f(x)\equiv f(2)\pmod{|a|}</math>... if <math>x=|b|(n+1)-1</math> then <math>f(x)\equiv f(|b|-1)\pmod{|a|}</math>. This means that the <math>b</math>-element collection <math>\left\{f(0), f(1), f(2), ... ,f(|b|-1)\right\}</math> contains all <math>|a|</math> residues mod <math>|a|</math> since <math>f</math> is surjective, so <math>|b|\ge |a|</math>. Doing the same to <math>g</math> yields that <math>|a|\ge |b|</math>, so this means that only <math>|a|=|b|</math> can work. | ||
+ | |||
+ | For <math>a=b</math> let <math>f(x)=x</math> and <math>g(x)=x+a</math>, and for <math>a=-b</math> let <math>f(x)=-x</math> and <math>g(x)=-x-a</math>, so <math>|a|=|b|</math> does work and are the only solutions, as desired. | ||
+ | |||
-Stormersyle | -Stormersyle | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | We claim that <math>f</math> and <math>g</math> exist if and only if <math>|a|=|b|</math>. | ||
+ | |||
+ | <b>Only If:</b> | ||
+ | |||
+ | For some fixed <math>j</math>, let <math>f(j)=k</math>. | ||
+ | |||
+ | If <math>b=0</math>, then <math>g(k)=j</math>. Suppose <math>a\ne 0</math>. Then <math>f(j)=f(g(k))=k+a\ne k</math>, a contradiction. Thus, <math>a=0</math>. Similarly, if <math>a=0</math>, then <math>b=0</math>, satisfying <math>|a|=|b|</math>. | ||
+ | |||
+ | Otherwise, <math>a,b\ne 0</math>. We know that <math>g(k)=g(f(j))=j+b</math>, <math>f(j+b)=f(g(k))=k+a</math>, <math>g(k+a)=j+2b</math>, and so on: <math>f(j+nb)=k+na</math> and <math>g(k+na)=j+(n+1)b</math> for <math>n\ge 0</math>. | ||
+ | |||
+ | Consider the value of <math>g(k-a)</math>. Suppose <math>g(k-a)=j'\ne j</math>. Then <math>f(j')=k</math> and <math>g(f(j'))=j+b\ne j'+b</math>, a contradiction. Thus, <math>g(k-a)=j</math>. We repeat with <math>f(j-b)</math>. Suppose <math>f(j-b)=k'-b\ne k-b</math>. Then <math>g(k'-b)=j</math> and <math>f(g(k'-b))=k\ne k'</math>, a contradition. Thus, <math>f(j-b)=k-b</math>. Continuing, <math>g(k-2a)=j-a</math>, and so on: <math>f(j+nb)=k+na</math> and <math>g(k+na)=j+(n+1)b</math> now for all <math>n</math>. | ||
+ | |||
+ | This defines <math>f(x)</math> for all <math>x\equiv j\pmod{|b|}</math> and <math>g(x)</math> for all <math>x\equiv f(j)\pmod{|a|}</math>. | ||
+ | |||
+ | This means that <math>x\equiv j\pmod{|b|}\implies f(x)\equiv f(j)\pmod{|a|}</math>, and <math>y\equiv f(j)\pmod{|a|}\implies g(y)\equiv j\pmod{|b|}</math> which implies <math>f(x)\equiv f(j)\pmod{|a|}\implies x\equiv j\pmod{|b|}</math>. | ||
+ | |||
+ | As a result, <math>f(x)</math> maps each residue mod <math>|b|</math> to a unique residue mod <math>|a|</math>, so <math>|a|\ge|b|</math>. Similarly, <math>g(x)</math> maps each residue mod <math>|a|</math> to a unique residue mod <math>|b|</math>, so <math>|b|\ge|a|</math>. Therefore, <math>|a|=|b|</math>. | ||
+ | |||
+ | <b>If:</b> | ||
+ | |||
+ | <math>|a|=|b|</math> means that either <math>a=b</math> or <math>a=-b</math>. <math>f(x)=x,g(x)=x+a</math> works for the former and <math>f(x)=-x,g(x)=-x-a</math> works for the latter, and we are done. | ||
+ | |||
+ | ~[[User:emerald_block|emerald_block]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 18:53, 7 April 2021
Contents
Problem
Let be the set of all integers. Find all pairs of integers
for which there exist functions
and
satisfying
for all integers
.
Solution 1
We claim that the answer is .
Proof:
and
are surjective because
and
can take on any integral value, and by evaluating the parentheses in different order, we find
and
. We see that if
then
to
as well, so similarly if
then
, so now assume
.
We see that if then
, if
then
, if
then
... if
then
. This means that the
-element collection
contains all
residues mod
since
is surjective, so
. Doing the same to
yields that
, so this means that only
can work.
For let
and
, and for
let
and
, so
does work and are the only solutions, as desired.
-Stormersyle
Solution 2
We claim that and
exist if and only if
.
Only If:
For some fixed , let
.
If , then
. Suppose
. Then
, a contradiction. Thus,
. Similarly, if
, then
, satisfying
.
Otherwise, . We know that
,
,
, and so on:
and
for
.
Consider the value of . Suppose
. Then
and
, a contradiction. Thus,
. We repeat with
. Suppose
. Then
and
, a contradition. Thus,
. Continuing,
, and so on:
and
now for all
.
This defines for all
and
for all
.
This means that , and
which implies
.
As a result, maps each residue mod
to a unique residue mod
, so
. Similarly,
maps each residue mod
to a unique residue mod
, so
. Therefore,
.
If:
means that either
or
.
works for the former and
works for the latter, and we are done.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
See also
2019 USAJMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |