Difference between revisions of "2005 AMC 10A Problems/Problem 2"

(See Also)
m (Improved formatting of answer choices)
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
For each pair of real numbers <math>a \neq b</math>, define the [[operation]] <math>\star</math> as
+
For each pair of real numbers <math>a \neq b</math>, define the operation <math>\star</math> as
  
<math> (a \star b) = \frac{a+b}{a-b} </math>.
+
<cmath>(a \star b) = \frac{a+b}{a-b}.</cmath>
  
 
What is the value of <math> ((1 \star 2) \star 3)</math>?
 
What is the value of <math> ((1 \star 2) \star 3)</math>?
  
<math> \mathrm{(A) \ } -\frac{2}{3}\qquad \mathrm{(B) \ } -\frac{1}{5}\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \textrm{This\, value\, is\, not\, defined.} </math>
+
<math>
 +
\textbf{(A) } -\frac{2}{3}\qquad \textbf{(B) } -\frac{1}{5}\qquad \textbf{(C) } 0\qquad \textbf{(D) } \frac{1}{2}\qquad \textbf{(E) } \text{This value is not defined.}
 +
</math>
  
 
==Solution==
 
==Solution==
<math> ((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = 0 \Longrightarrow \mathrm{(C)}</math>
+
<math> ((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = \boxed{\textbf{(C) } 0}</math>.
 +
 
 +
==Video Solution 1==
 +
https://youtu.be/5g_m3_nck8E
 +
 
 +
==Video Solution 2==
 +
https://youtu.be/6FnnFTWUJ0s
 +
 
 +
~Charles3829
  
 
==See also==
 
==See also==

Latest revision as of 17:00, 1 July 2025

Problem

For each pair of real numbers $a \neq b$, define the operation $\star$ as

\[(a \star b) = \frac{a+b}{a-b}.\]

What is the value of $((1 \star 2) \star 3)$?

$\textbf{(A) } -\frac{2}{3}\qquad \textbf{(B) } -\frac{1}{5}\qquad \textbf{(C) } 0\qquad \textbf{(D) } \frac{1}{2}\qquad \textbf{(E) } \text{This value is not defined.}$

Solution

$((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = \boxed{\textbf{(C) } 0}$.

Video Solution 1

https://youtu.be/5g_m3_nck8E

Video Solution 2

https://youtu.be/6FnnFTWUJ0s

~Charles3829

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png