Difference between revisions of "2019 AMC 10A Problems/Problem 13"

m
(Solution 5)
 
(8 intermediate revisions by 6 users not shown)
Line 37: Line 37:
  
 
Adding the two equations gives us
 
Adding the two equations gives us
<cmath>m\angle BFC - m\angle CAB = m\overarc{BC}\implies m\angle BFC=m\overarc{BC} - m\angle CAB</cmath>
+
<cmath>m\angle BFC + m\angle CAB = m\overarc{BC}\implies m\angle BFC=m\overarc{BC} - m\angle CAB</cmath>
  
 
Since <math>\overarc{BC}</math> is the diameter, <math>m\overarc{BC}=180^{\circ}</math>, and because <math>\triangle ABC</math> is isosceles and <math>m\angle ACB=40^{\circ}</math>, we have <math>m\angle CAB=70^{\circ}</math>. Thus
 
Since <math>\overarc{BC}</math> is the diameter, <math>m\overarc{BC}=180^{\circ}</math>, and because <math>\triangle ABC</math> is isosceles and <math>m\angle ACB=40^{\circ}</math>, we have <math>m\angle CAB=70^{\circ}</math>. Thus
Line 46: Line 46:
 
Notice that if <math>\angle BEC = 90^{\circ}</math>, then <math>\angle BCE</math> and <math>\angle ACE</math> must be <math>20^{\circ}</math>. Using cyclic quadrilateral properties (or the properties of a subtended arc), we can find that <math>\angle EBD \cong \angle ECD = 20^{\circ}</math>. Thus <math>\angle CBF = 70 - 20 = 50^{\circ}</math>, and so <math>\angle BFC = 180 - 20 - 50 = 110^{\circ}</math>, which is <math>\boxed{\textbf{(D)}}</math>.
 
Notice that if <math>\angle BEC = 90^{\circ}</math>, then <math>\angle BCE</math> and <math>\angle ACE</math> must be <math>20^{\circ}</math>. Using cyclic quadrilateral properties (or the properties of a subtended arc), we can find that <math>\angle EBD \cong \angle ECD = 20^{\circ}</math>. Thus <math>\angle CBF = 70 - 20 = 50^{\circ}</math>, and so <math>\angle BFC = 180 - 20 - 50 = 110^{\circ}</math>, which is <math>\boxed{\textbf{(D)}}</math>.
  
==Solution 5 (CHEATING)==
+
==Solution 5==
  
If you can't see how to solve it, you could simply draw an accurate diagram and measure the angle using a protractor as 110 - <math>\boxed{\textbf{(D)}}</math>.
+
<math>\triangle{ABC}</math> is isosceles so <math>\angle{CAB}=70^{\circ}</math>. Since <math>CB</math> is a diameter, <math>\angle{CDB}=\angle{CEB}=90^{\circ}</math>. Quadrilateral <math>ADFE</math> is cyclic since <math>\angle{ADF}+\angle{AEF}=180^{\circ}</math>. Therefore <math>\angle{BFC}=\angle{DFE}=180^{\circ}-\angle{CAB}=\boxed{110^{\circ}}</math>
  
 +
==Solution 6 (Different approach to solution 3)==
  
 +
Label the center of the circle \( M \). Then, we can say that angle \( DME \) must be congruent to angle \( DAE \) as they both share the same arc \( DE \). So therefore angle \( DME = 70^\circ \). The angle \( CFB \) is inscribed on the diameter, but it doesn't touch the circumference of the circle. Therefore angle \( DME \) is supplementary to angle \( CFB \), so our answer is \( 180^\circ - DME = 180^\circ - 70^\circ = \) <math>\boxed{110^{\circ}}</math>.
 +
 +
~Pinotation
 +
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/O_o_-yjGrOU?t=849
 +
 +
~ pi_is_3.14
 +
 +
==Video Solution==
 +
 +
https://youtu.be/GmQIEX4Izt4
 +
 +
Education, the Study of Everything
 +
==Video Solution by TheBeautyofMath==
 +
https://youtu.be/KXwjFdwrfqk
 +
Includes small notebook concept summary, and where to learn the concepts in longer format.
 +
 +
~IceMatrix
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2019|ab=A|num-b=12|num-a=14}}
 
{{AMC10 box|year=2019|ab=A|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:31, 4 September 2025

Problem

Let $\triangle ABC$ be an isosceles triangle with $BC = AC$ and $\angle ACB = 40^{\circ}$. Construct the circle with diameter $\overline{BC}$, and let $D$ and $E$ be the other intersection points of the circle with the sides $\overline{AC}$ and $\overline{AB}$, respectively. Let $F$ be the intersection of the diagonals of the quadrilateral $BCDE$. What is the degree measure of $\angle BFC ?$

$\textbf{(A) } 90 \qquad\textbf{(B) } 100 \qquad\textbf{(C) } 105 \qquad\textbf{(D) } 110 \qquad\textbf{(E) } 120$

Solution 1

[asy] unitsize(40);draw((-1,0)--(1,0)--(0,2.75)--cycle);draw(circumcircle((-1,0),(0,0),(0,2.75)));label("$A$",(1,0),SE);label("$C$",(0,2.75),N);label("$B$",(-1,0),SW);label("$E$",(0,0),S);label("$D$",(0.77,0.64),E);draw((0,0)--(0,2.75));draw((-1,0)--(0.77,0.64));[/asy]

Drawing it out, we see $\angle BDC$ and $\angle BEC$ are right angles, as they are inscribed in a semicircle. Using the fact that it is an isosceles triangle, we find $\angle ABC=70^{\circ}$. We can find $\angle ECB=20^{\circ}$ and $\angle DBC=50^{\circ}$ by the triangle angle sum on $\triangle ECB$ and $\triangle DBC$.

\[\angle BDC+\angle DCB+\angle DBC=180^{\circ}\implies90^{\circ}+40^{\circ}+\angle DBC=180^{\circ}\implies\angle DBC=50^{\circ}\]

\[\angle BEC+\angle EBC+\angle ECB=180^{\circ}\implies90^{\circ}+70^{\circ}+\angle ECB=180^{\circ}\implies\angle ECB=20^{\circ}\]

Then, we take triangle $BFC$, and find $\angle BFC=180^{\circ}-50^{\circ}-20^{\circ}=\boxed{\textbf{(D) } 110^{\circ}}.$

Solution 2

Alternatively, we could have used similar triangles. We start similarly to Solution 1.

Drawing it out, we see $\angle BDC$ and $\angle BEC$ are right angles, as they are inscribed in a semicircle. Therefore, \[\angle BDA = 180^{\circ} - \angle BDC = 180^{\circ} - 90^{\circ} = 90^{\circ}.\]

So, $\triangle BEF \sim BDA$ by AA Similarity, since $\angle EBF = \angle DBA$ and $\angle BEC = 90^{\circ} = \angle BDA$. Thus, we know \[\angle EFB = \angle DAB = \angle CAB = 70^{\circ}.\]

Finally, we deduce \[\angle BFC = 180^{\circ} - \angle EFB = 180^{\circ} - 70^{\circ} = \boxed{\textbf{(D) } 110^{\circ}}.\]

Solution 3 (outside angles)

Through the property of angles formed by intersecting chords, we find that \[m\angle BFC=\frac{m\overarc{BC}+m\overarc{DE}}{2}\]

Through the Outside Angles Theorem, we find that \[m\angle CAB = \frac{m\overarc{BC}-m\overarc{DE}}{2}\]

Adding the two equations gives us \[m\angle BFC + m\angle CAB = m\overarc{BC}\implies m\angle BFC=m\overarc{BC} - m\angle CAB\]

Since $\overarc{BC}$ is the diameter, $m\overarc{BC}=180^{\circ}$, and because $\triangle ABC$ is isosceles and $m\angle ACB=40^{\circ}$, we have $m\angle CAB=70^{\circ}$. Thus \[m\angle BFC=180^{\circ}-70^{\circ}=\boxed{\textbf{(D) } 110^{\circ}}\]

Solution 4

Notice that if $\angle BEC = 90^{\circ}$, then $\angle BCE$ and $\angle ACE$ must be $20^{\circ}$. Using cyclic quadrilateral properties (or the properties of a subtended arc), we can find that $\angle EBD \cong \angle ECD = 20^{\circ}$. Thus $\angle CBF = 70 - 20 = 50^{\circ}$, and so $\angle BFC = 180 - 20 - 50 = 110^{\circ}$, which is $\boxed{\textbf{(D)}}$.

Solution 5

$\triangle{ABC}$ is isosceles so $\angle{CAB}=70^{\circ}$. Since $CB$ is a diameter, $\angle{CDB}=\angle{CEB}=90^{\circ}$. Quadrilateral $ADFE$ is cyclic since $\angle{ADF}+\angle{AEF}=180^{\circ}$. Therefore $\angle{BFC}=\angle{DFE}=180^{\circ}-\angle{CAB}=\boxed{110^{\circ}}$

Solution 6 (Different approach to solution 3)

Label the center of the circle \( M \). Then, we can say that angle \( DME \) must be congruent to angle \( DAE \) as they both share the same arc \( DE \). So therefore angle \( DME = 70^\circ \). The angle \( CFB \) is inscribed on the diameter, but it doesn't touch the circumference of the circle. Therefore angle \( DME \) is supplementary to angle \( CFB \), so our answer is \( 180^\circ - DME = 180^\circ - 70^\circ = \) $\boxed{110^{\circ}}$.

~Pinotation

Video Solution by OmegaLearn

https://youtu.be/O_o_-yjGrOU?t=849

~ pi_is_3.14

Video Solution

https://youtu.be/GmQIEX4Izt4

Education, the Study of Everything

Video Solution by TheBeautyofMath

https://youtu.be/KXwjFdwrfqk Includes small notebook concept summary, and where to learn the concepts in longer format.

~IceMatrix

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png