Difference between revisions of "1998 JBMO Problems/Problem 3"

m (fixed stupid arithmetic mistake. the second solution to the eq is ok now)
(Solution)
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
== Solution ==
 
== Solution ==
  
Note that <math>x^y</math> is at least one. Then <math>y^{x - y}</math> is at least one, so <math>x \geq y</math>.
+
We are given the equation:
 +
\[
 +
x^y = y^{x - y}
 +
\]
 +
and asked to find all positive integers \((x, y)\) satisfying it.
  
Write <math>x = a^{b+c}, y = a^c</math>, where <math>\gcd(b, c) = 1</math>. (We know that <math>b</math> is nonnegative because <math>x\geq y</math>.) Then our equation becomes <math>a^{(b+c)*a^c} = a^{c*(a^{b+c} - a^c)}</math>. Taking logarithms base <math>a</math> and dividing through by <math>a^c</math>, we obtain <math>b + c = c*(a^b - 1)</math>.
+
---
  
Since <math>c</math> divides the RHS of this equation, it must divide the LHS. Since <math>\gcd(b, c) = 1</math> by assumption, we must have <math>c = 1</math>, so that the equation reduces to <math>b + 1 = a^b - 1</math>, or <math>b + 2 = a^b</math>. This equation has only the solutions <math>b = 1, a = 3</math> and <math>b = 2, a = 2</math>.
+
== First Approach (Algebraic Parameterization) ==
  
Therefore, our only solutions are <math>x = 3^{1 + 1} = 9, y = 3^1 = 3</math>, and <math>x = 2^{2+1} = 8, y = 2^1 = 2</math>, and we are done.
+
Note that \(x^y \geq 1\), so \(y^{x - y} \geq 1\) as well. This implies \(x \geq y\).
 +
 
 +
Suppose \(x = a^{b + c}\), \(y = a^c\) for some integer \(a > 0\) and integers \(b, c \geq 1\) with \(\gcd(b, c) = 1\). This ensures that \(x \geq y\).
 +
 
 +
Then the original equation becomes:
 +
\[
 +
(a^{b + c})^{a^c} = (a^c)^{a^{b + c} - a^c}
 +
\]
 +
Taking logarithms base \(a\), we get:
 +
\[
 +
(b + c) \cdot a^c = c \cdot (a^{b + c} - a^c)
 +
\]
 +
Divide both sides by \(a^c\):
 +
\[
 +
b + c = c(a^b - 1)
 +
\]
 +
Now, since \(\gcd(b, c) = 1\), and \(c\) divides the right-hand side, it must divide the left-hand side. Hence, \(c = 1\). Substituting back:
 +
\[
 +
b + 1 = a^b - 1 \Rightarrow a^b = b + 2
 +
\]
 +
We now solve for small values of \(b\):
 +
 
 +
- If \(b = 1\): \(a^1 = 1 + 2 = 3 \Rightarrow a = 3\)
 +
- If \(b = 2\): \(a^2 = 2 + 2 = 4 \Rightarrow a = 2\)
 +
- Larger \(b\) gives too big values of \(a^b\), so no further solutions.
 +
 
 +
So the only valid pairs \((a, b)\) are \((3, 1)\) and \((2, 2)\). We now compute:
 +
 
 +
- For \((a, b) = (3, 1)\), \(c = 1\): 
 +
  \(y = a^c = 3\), \(x = a^{b + c} = 3^2 = 9\)
 +
 
 +
- For \((a, b) = (2, 2)\), \(c = 1\): 
 +
  \(y = 2\), \(x = 2^3 = 8\)
 +
 
 +
So the corresponding solutions are \((x, y) = (9, 3)\) and \((8, 2)\).
 +
 
 +
---
 +
 
 +
== Second Approach (Logarithmic Substitution) ==
 +
 
 +
Assume \(x = ky\) for some integer \(k > 1\). Then:
 +
\[
 +
(ky)^y = y^{ky - y} = y^{y(k - 1)}
 +
\]
 +
Taking natural logarithms:
 +
\[
 +
y \ln(ky) = y(k - 1)\ln y \Rightarrow \ln(ky) = (k - 1)\ln y
 +
\]
 +
Expanding the left-hand side:
 +
\[
 +
\ln k + \ln y = (k - 1)\ln y \Rightarrow \ln k = (k - 2)\ln y \Rightarrow \ln y = \frac{\ln k}{k - 2}
 +
\]
 +
 
 +
For \(y\) to be an integer, the RHS must be \(\ln\) of an integer.
 +
 
 +
Try small values of \(k\):
 +
- \(k = 3\): \(\ln y = \frac{\ln 3}{1} = \ln 3 \Rightarrow y = 3, x = 9\)
 +
- \(k = 4\): \(\ln y = \frac{\ln 4}{2} = \ln 2 \Rightarrow y = 2, x = 8\)
 +
- \(k = 5\): \(\ln y = \frac{\ln 5}{3} \notin \ln(\mathbb{Z})\) ⟹ discard
 +
 
 +
No other values of \(k\) give integer \(y\). Also, checking small \(y\) values directly:
 +
 
 +
- \(y = 1\): Then \(x^1 = 1^{x - 1} = 1 \Rightarrow x = 1\) ⟹ \((1, 1)\) is a solution.
 +
 
 +
---
 +
 
 +
== Final Answer ==
 +
 
 +
The only positive integer solutions to the equation \(x^y = y^{x - y}\) are:
 +
\[
 +
\boxed{(x, y) = (1, 1),\ (8, 2),\ (9, 3)}
 +
\]
 +
 
 +
We are given the equation:
 +
\[
 +
x^y = y^{x - y}
 +
\]
 +
and asked to find all positive integers \((x, y)\) that satisfy it.
 +
 
 +
\textbf{Step 1: Try small values of \(y\)}
 +
 
 +
We begin by checking small values of \(y\):
 +
 
 +
- If \(y = 1\), then the equation becomes:
 +
  \[
 +
  x^1 = 1^{x - 1} = 1 \Rightarrow x = 1
 +
  \]
 +
  So \((x, y) = (1, 1)\) is a solution.
 +
 
 +
- If \(y = 2\), try \(x = 8\):
 +
  \[
 +
  x^y = 8^2 = 64,\quad y^{x - y} = 2^6 = 64
 +
  \]
 +
  So \((x, y) = (8, 2)\) is a solution.
 +
 
 +
- If \(y = 3\), try \(x = 9\):
 +
  \[
 +
  x^y = 9^3 = 729,\quad y^{x - y} = 3^6 = 729
 +
  \]
 +
  So \((x, y) = (9, 3)\) is a solution.
 +
 
 +
\textbf{Step 2: General approach using logarithms}
 +
 
 +
Assume \(x = ky\) for some integer \(k > 1\). Then the equation becomes:
 +
\[
 +
(ky)^y = y^{ky - y} = y^{y(k - 1)}
 +
\]
 +
Taking natural logarithms:
 +
\[
 +
y \ln(ky) = y(k - 1)\ln y \Rightarrow \ln(ky) = (k - 1)\ln y
 +
\]
 +
Expanding the left-hand side:
 +
\[
 +
\ln k + \ln y = (k - 1)\ln y \Rightarrow \ln k = (k - 2)\ln y \Rightarrow \ln y = \frac{\ln k}{k - 2}
 +
\]
 +
So for \(y\) to be an integer, \(\frac{\ln k}{k - 2}\) must be the logarithm of an integer.
 +
 
 +
Try small values of \(k\):
 +
- If \(k = 3\): \(\ln y = \frac{\ln 3}{1} = \ln 3 \Rightarrow y = 3, x = 9\)
 +
- If \(k = 4\): \(\ln y = \frac{\ln 4}{2} = \ln 2 \Rightarrow y = 2, x = 8\)
 +
- If \(k = 5\): \(\ln y = \frac{\ln 5}{3} \not\in \ln(\mathbb{Z})\), so no integer solution for \(y\)
 +
 
 +
No other values of \(k\) give integer solutions for \(y\).
 +
 
 +
\textbf{Final Answer:} The only positive integer solutions are:
 +
\[
 +
\boxed{(x, y) = (1, 1),\ (8, 2),\ (9, 3)}
 +
\]
  
 
== See also ==
 
== See also ==

Latest revision as of 13:39, 4 July 2025

Find all pairs of positive integers $(x,y)$ such that \[x^y = y^{x - y}.\]

Solution

We are given the equation: \[ x^y = y^{x - y} \] and asked to find all positive integers \((x, y)\) satisfying it.

---

First Approach (Algebraic Parameterization)

Note that \(x^y \geq 1\), so \(y^{x - y} \geq 1\) as well. This implies \(x \geq y\).

Suppose \(x = a^{b + c}\), \(y = a^c\) for some integer \(a > 0\) and integers \(b, c \geq 1\) with \(\gcd(b, c) = 1\). This ensures that \(x \geq y\).

Then the original equation becomes: \[ (a^{b + c})^{a^c} = (a^c)^{a^{b + c} - a^c} \] Taking logarithms base \(a\), we get: \[ (b + c) \cdot a^c = c \cdot (a^{b + c} - a^c) \] Divide both sides by \(a^c\): \[ b + c = c(a^b - 1) \] Now, since \(\gcd(b, c) = 1\), and \(c\) divides the right-hand side, it must divide the left-hand side. Hence, \(c = 1\). Substituting back: \[ b + 1 = a^b - 1 \Rightarrow a^b = b + 2 \] We now solve for small values of \(b\):

- If \(b = 1\): \(a^1 = 1 + 2 = 3 \Rightarrow a = 3\) - If \(b = 2\): \(a^2 = 2 + 2 = 4 \Rightarrow a = 2\) - Larger \(b\) gives too big values of \(a^b\), so no further solutions.

So the only valid pairs \((a, b)\) are \((3, 1)\) and \((2, 2)\). We now compute:

- For \((a, b) = (3, 1)\), \(c = 1\):

 \(y = a^c = 3\), \(x = a^{b + c} = 3^2 = 9\)

- For \((a, b) = (2, 2)\), \(c = 1\):

 \(y = 2\), \(x = 2^3 = 8\)

So the corresponding solutions are \((x, y) = (9, 3)\) and \((8, 2)\).

---

Second Approach (Logarithmic Substitution)

Assume \(x = ky\) for some integer \(k > 1\). Then: \[ (ky)^y = y^{ky - y} = y^{y(k - 1)} \] Taking natural logarithms: \[ y \ln(ky) = y(k - 1)\ln y \Rightarrow \ln(ky) = (k - 1)\ln y \] Expanding the left-hand side: \[ \ln k + \ln y = (k - 1)\ln y \Rightarrow \ln k = (k - 2)\ln y \Rightarrow \ln y = \frac{\ln k}{k - 2} \]

For \(y\) to be an integer, the RHS must be \(\ln\) of an integer.

Try small values of \(k\): - \(k = 3\): \(\ln y = \frac{\ln 3}{1} = \ln 3 \Rightarrow y = 3, x = 9\) - \(k = 4\): \(\ln y = \frac{\ln 4}{2} = \ln 2 \Rightarrow y = 2, x = 8\) - \(k = 5\): \(\ln y = \frac{\ln 5}{3} \notin \ln(\mathbb{Z})\) ⟹ discard

No other values of \(k\) give integer \(y\). Also, checking small \(y\) values directly:

- \(y = 1\): Then \(x^1 = 1^{x - 1} = 1 \Rightarrow x = 1\) ⟹ \((1, 1)\) is a solution.

---

Final Answer

The only positive integer solutions to the equation \(x^y = y^{x - y}\) are: \[ \boxed{(x, y) = (1, 1),\ (8, 2),\ (9, 3)} \]

We are given the equation: \[ x^y = y^{x - y} \] and asked to find all positive integers \((x, y)\) that satisfy it.

\textbf{Step 1: Try small values of \(y\)}

We begin by checking small values of \(y\):

- If \(y = 1\), then the equation becomes:

 \[
 x^1 = 1^{x - 1} = 1 \Rightarrow x = 1
 \]
 So \((x, y) = (1, 1)\) is a solution.

- If \(y = 2\), try \(x = 8\):

 \[
 x^y = 8^2 = 64,\quad y^{x - y} = 2^6 = 64
 \]
 So \((x, y) = (8, 2)\) is a solution.

- If \(y = 3\), try \(x = 9\):

 \[
 x^y = 9^3 = 729,\quad y^{x - y} = 3^6 = 729
 \]
 So \((x, y) = (9, 3)\) is a solution.

\textbf{Step 2: General approach using logarithms}

Assume \(x = ky\) for some integer \(k > 1\). Then the equation becomes: \[ (ky)^y = y^{ky - y} = y^{y(k - 1)} \] Taking natural logarithms: \[ y \ln(ky) = y(k - 1)\ln y \Rightarrow \ln(ky) = (k - 1)\ln y \] Expanding the left-hand side: \[ \ln k + \ln y = (k - 1)\ln y \Rightarrow \ln k = (k - 2)\ln y \Rightarrow \ln y = \frac{\ln k}{k - 2} \] So for \(y\) to be an integer, \(\frac{\ln k}{k - 2}\) must be the logarithm of an integer.

Try small values of \(k\): - If \(k = 3\): \(\ln y = \frac{\ln 3}{1} = \ln 3 \Rightarrow y = 3, x = 9\) - If \(k = 4\): \(\ln y = \frac{\ln 4}{2} = \ln 2 \Rightarrow y = 2, x = 8\) - If \(k = 5\): \(\ln y = \frac{\ln 5}{3} \not\in \ln(\mathbb{Z})\), so no integer solution for \(y\)

No other values of \(k\) give integer solutions for \(y\).

\textbf{Final Answer:} The only positive integer solutions are: \[ \boxed{(x, y) = (1, 1),\ (8, 2),\ (9, 3)} \]

See also

1998 JBMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5
All JBMO Problems and Solutions