Difference between revisions of "1991 AHSME Problems/Problem 19"
(→Solution 3 (Trig)) |
Aryasaikia (talk | contribs) (→Solution 2) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 22: | Line 22: | ||
Let <math>F</math> be the point such that <math>DF</math> and <math>CF</math> are parallel to <math>CE</math> and <math>DE</math>, respectively, and let <math>DE = x</math> and <math>BE^2 = 169-x^2</math>. Then, <math>[FDEC] = x(4+\sqrt{169-x^2}) = [ABC] + [BED] + [ABD] + [AFD] = 6 + \dfrac{x\sqrt{169-x^2}}{2} + 30 + \dfrac{(x-3)(4+\sqrt{169-x^2})}{2}</math>. So, <math>4x+x\sqrt{169-x^2} = 60 + x\sqrt{169-x^2} - 3\sqrt{169-x^2}</math>. Simplifying <math>3\sqrt{169-x^2} = 60 - 4x</math>, and <math>1521 - 9x^2 = 16x^2 - 480x + 3600</math>. Therefore <math>25x^2 - 480x + 2079 = 0</math>, and <math>x = \dfrac{48\pm15}{5}</math>. Checking, <math>x = \dfrac{63}{5}</math> is the answer, so <math>\dfrac{DE}{DB} = \dfrac{\dfrac{63}{5}}{13} = \dfrac{63}{65}</math>. The answer is <math>\boxed{\textbf{(B) } 128}</math>. | Let <math>F</math> be the point such that <math>DF</math> and <math>CF</math> are parallel to <math>CE</math> and <math>DE</math>, respectively, and let <math>DE = x</math> and <math>BE^2 = 169-x^2</math>. Then, <math>[FDEC] = x(4+\sqrt{169-x^2}) = [ABC] + [BED] + [ABD] + [AFD] = 6 + \dfrac{x\sqrt{169-x^2}}{2} + 30 + \dfrac{(x-3)(4+\sqrt{169-x^2})}{2}</math>. So, <math>4x+x\sqrt{169-x^2} = 60 + x\sqrt{169-x^2} - 3\sqrt{169-x^2}</math>. Simplifying <math>3\sqrt{169-x^2} = 60 - 4x</math>, and <math>1521 - 9x^2 = 16x^2 - 480x + 3600</math>. Therefore <math>25x^2 - 480x + 2079 = 0</math>, and <math>x = \dfrac{48\pm15}{5}</math>. Checking, <math>x = \dfrac{63}{5}</math> is the answer, so <math>\dfrac{DE}{DB} = \dfrac{\dfrac{63}{5}}{13} = \dfrac{63}{65}</math>. The answer is <math>\boxed{\textbf{(B) } 128}</math>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Solution 3 (Trig)== | == Solution 3 (Trig)== | ||
We have <math>\angle ABC = \arcsin\left(\frac{3}{5}\right)</math> and <math>\angle DBA=\arcsin\left(\frac{12}{13}\right).</math> Now we are trying to find <math>\sin(\angle DBE)=\sin\left(180^{\circ}-\angle DBC=\sin(180^{\circ}-\arcsin\left(\frac{3}{5}\right)\right)-\arcsin\left(\frac{12}{13}\right)=\sin(\arcsin\left(\frac{3}{5}\right)+\arcsin\left(\frac{12}{13}\right)).</math> Now we use the <math>\sin</math> angle sum identity, which states <math>\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b).</math> Using this identity yields <math>\sin\left(\arcsin\left(\frac{3}{5}\right)\right)\cos\left(\arcsin\left(\frac{12}{13}\right)\right)+\cos\left(\arcsin\left(\frac{3}{5}\right)\right)+\sin\left(\arcsin\left(\frac{12}{13}\right)\right).</math> | We have <math>\angle ABC = \arcsin\left(\frac{3}{5}\right)</math> and <math>\angle DBA=\arcsin\left(\frac{12}{13}\right).</math> Now we are trying to find <math>\sin(\angle DBE)=\sin\left(180^{\circ}-\angle DBC=\sin(180^{\circ}-\arcsin\left(\frac{3}{5}\right)\right)-\arcsin\left(\frac{12}{13}\right)=\sin(\arcsin\left(\frac{3}{5}\right)+\arcsin\left(\frac{12}{13}\right)).</math> Now we use the <math>\sin</math> angle sum identity, which states <math>\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b).</math> Using this identity yields <math>\sin\left(\arcsin\left(\frac{3}{5}\right)\right)\cos\left(\arcsin\left(\frac{12}{13}\right)\right)+\cos\left(\arcsin\left(\frac{3}{5}\right)\right)+\sin\left(\arcsin\left(\frac{12}{13}\right)\right).</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == |
Latest revision as of 16:59, 25 June 2025
Problem
Triangle has a right angle at
and
. Triangle
has a right angle at
and
. Points
and
are on opposite sides of
. The line through
parallel to
meets
extended at
. If
where
and
are relatively prime positive integers, then
Solution 1
Solution by e_power_pi_times_i
Let be the point such that
and
are parallel to
and
, respectively, and let
and
. Then,
. So,
. Simplifying
, and
. Therefore
, and
. Checking,
is the answer, so
. The answer is
.
Solution 3 (Trig)
We have and
Now we are trying to find
Now we use the
angle sum identity, which states
Using this identity yields
See also
1991 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.