Difference between revisions of "2021 AMC 12B Problems/Problem 14"

(Solution 1)
 
(46 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>ABCD</math> be a rectangle and let <math>\overline{DM}</math> be a segment perpendicular to the plane of <math>ABCD</math>. Suppose that <math>\overline{DM}</math> has integer length, and the lengths of <math>\overline{MA},\overline{MC},</math> and <math>\overline{MB}</math> are consecutive odd positive integers (in this order). What is the volume of pyramid <math>MACD?</math>
+
Let <math>ABCD</math> be a rectangle and let <math>\overline{DM}</math> be a segment perpendicular to the plane of <math>ABCD</math>. Suppose that <math>\overline{DM}</math> has integer length, and the lengths of <math>\overline{MA},\overline{MC},</math> and <math>\overline{MB}</math> are consecutive odd positive integers (in this order). What is the volume of pyramid <math>MABCD?</math>
  
 
<math>\textbf{(A) }24\sqrt5 \qquad \textbf{(B) }60 \qquad \textbf{(C) }28\sqrt5\qquad \textbf{(D) }66 \qquad \textbf{(E) }8\sqrt{70}</math>
 
<math>\textbf{(A) }24\sqrt5 \qquad \textbf{(B) }60 \qquad \textbf{(C) }28\sqrt5\qquad \textbf{(D) }66 \qquad \textbf{(E) }8\sqrt{70}</math>
  
==Solution==
+
==Solution 1==
===Solution 1===
+
Let <math>MA=a</math> and <math>MD=d.</math> It follows that <math>MC=a+2</math> and <math>MB=a+4.</math>
This question is just about pythagorean theorem
+
 
<cmath>a^2+(a+2)^2-b^2 = (a+4)^2</cmath>
+
As shown below, note that <math>\triangle MAD</math> and <math>\triangle MBC</math> are both right triangles.
<cmath>2a^2+4a+4-b^2 = a^2+8a+16</cmath>
+
<asy>
<cmath>a^2-4a+4-b^2 = 16</cmath>
+
size(300);
<cmath>(a-2+b)(a-2-b) = 16</cmath>
+
import graph3;
<cmath>a=3, b=7</cmath>
+
import solids;
With these calculation, we find out answer to be <math>\boxed{\textbf{(A) }24\sqrt5}</math>
+
 
 +
currentprojection=orthographic((0.5,-0.25,-0.5));
 +
triple A, B, C, D, M;
 +
A = (-2sqrt(10),0,0);
 +
B = (-2sqrt(10),-6sqrt(2),0);
 +
C = (0,-6sqrt(2),0);
 +
D = (0,0,0);
 +
M = (0,0,3);
 +
draw(surface(M--A--D--cycle),yellow);
 +
draw(surface(M--B--C--cycle),yellow);
 +
draw(D--A--B--C^^A--M^^B--M^^C--M^^D--M);
 +
draw(C--D,dashed);
 +
dot(A^^B^^C^^D^^M,linewidth(4.5));
 +
label("$A$",A,2*dir(A-B));
 +
label("$B$",B,2*dir(B-A));
 +
label("$C$",C,2*dir(C-D));
 +
label("$D$",D,2*dir(D-C));
 +
label("$M$",M,2*dir((1,1,0)));
 +
label("$a$",midpoint(M--A),2*dir((-1,-1,0)),red);
 +
label("$d$",midpoint(M--D),2*dir((1,1,0)),red);
 +
label("$a+2$",midpoint(M--C),2*dir((1,-1,0)),red);
 +
label("$a+4$",midpoint(M--B),2*dir((-1,1,0)),red);
 +
</asy>
 +
By the Pythagorean Theorem, we have
 +
<cmath>\begin{alignat*}{6}
 +
AD^2 &= MA^2 - MD^2 &&= a^2 - d^2, \\
 +
BC^2 &= MB^2 - MC^2 &&= (a+4)^2 - (a+2)^2.
 +
\end{alignat*}</cmath>
 +
Since <math>AD=BC</math> in rectangle <math>ABCD,</math> we equate the expressions for <math>AD^2</math> and <math>BC^2,</math> then rearrange and factor:
 +
<cmath>\begin{align*}
 +
a^2 - d^2 &= (a+4)^2 - (a+2)^2 \\
 +
a^2 - d^2 &= 4a + 12 \\
 +
a^2 - 4a - d^2 &= 12 \\
 +
(a-2)^2 - d^2 &= 16 \\
 +
(a+d-2)(a-d-2) &= 16.
 +
\end{align*}</cmath>
 +
As <math>a+d-2</math> and <math>a-d-2</math> have the same parity, we get <math>a+d-2=8</math> and <math>a-d-2=2,</math> from which <math>(a,d)=(7,3).</math>
 +
 
 +
Applying the Pythagorean Theorem to right <math>\triangle MAD</math> and right <math>\triangle MCD,</math> we obtain <math>AD=2\sqrt{10}</math> and <math>CD=6\sqrt2,</math> respectively.
 +
 
 +
Let the brackets denote areas. Together, the volume of pyramid <math>MABCD</math> is <cmath>\frac13\cdot [ABCD]\cdot MD = \frac13\cdot (AD\cdot CD)\cdot MD = \boxed{\textbf{(A) }24\sqrt5}.</cmath>
 +
~Lopkiloinm ~MRENTHUSIASM
 +
 
 +
==Solution 2==
 +
Let <math>AD=b</math>, <math>CD=a</math>, <math>MD=x</math>, <math>MC=t</math>. It follows that <math>MA=t-2</math> and <math>MB=t+2</math>.
 +
 
 +
We have three equations:
 +
<cmath>\begin{align*}
 +
a^2 + x^2 &= t^2, \\
 +
a^2 + b^2 + x^2 &= t^2 + 4t + 4, \\
 +
b^2 + x^2 &= t^2 - 4t + 4.
 +
\end{align*}</cmath>
 +
Substituting the first and third equations into the second equation, we get:
 +
<cmath>\begin{align*}
 +
t^2 - 8t - x^2 &= 0 \\
 +
(t-4)^2 - x^2 &= 16 \\
 +
(t-4-x)(t-4+x) &= 16.
 +
\end{align*}</cmath>
 +
Therefore, we have <math>t = 9</math> and <math>x = 3</math>.
 +
 
 +
Solving for other values, we get <math>b = 2\sqrt{10}</math>, <math>a = 6\sqrt{2}</math>.
 +
The volume is then <cmath>\frac{1}{3} abx = \boxed{\textbf{(A) }24\sqrt5}.</cmath>
 +
 
 +
~jamess2022 (burntTacos)
 +
 
 +
==Solution 3==
 +
First and foremost, the diagram must be drawn.
 +
<asy>
 +
import graph;
 +
 
 +
size(250);
 +
 
 +
pair A = (0,0);
 +
pair B = (4.5,0);
 +
pair C = (6,1.1);
 +
pair D = (1.5,1.1);
 +
pair M = (1.5,3.45);
 +
 
 +
draw(A--B);
 +
draw(C--B);
 +
draw(A--D, dashed);
 +
draw(C--D, dashed);
 +
draw(M--A);
 +
draw(M--B);
 +
draw(M--C);
 +
draw(M--D, dashed);
 +
 
 +
draw((1.5,1.3)--(1.7,1.3)--(1.7,1.1));
 +
 
 +
dot(A,linewidth(4.5));
 +
dot(B,linewidth(4.5));
 +
dot(C,linewidth(4.5));
 +
dot(D,linewidth(4.5));
 +
dot(M,linewidth(4.5));
 +
 
 +
label("$A$", A, W);
 +
label("$B$", B, SE);
 +
label("$C$", C, E);
 +
label("$D$", D, NW);
 +
label("$M$", M, N);
 +
 
 +
label("$x$", midpoint(M--A), NW, red);
 +
label("$x+4$", midpoint(M--B), SE, red);
 +
label("$x+2$", midpoint(M--C), NE, red);
 +
label("$a$", midpoint(A--D), W, red);
 +
label("$b$", midpoint(A--B), S, red);
 +
label("$I$", midpoint(M--D), E, red);
 +
</asy>
 +
With the diagram, an impulse to utilize Pythagorean theorem is created. Thereby, the shaded right triangles may be used.
 +
<asy>
 +
import graph;
 +
 
 +
size(250);
 +
 
 +
pair A = (0,0);
 +
pair B = (4.5,0);
 +
pair C = (6,1.1);
 +
pair D = (1.5,1.1);
 +
pair M = (1.5,3.45);
 +
 
 +
draw(A--B);
 +
draw(C--B);
 +
draw(A--D, dashed);
 +
draw(C--D, dashed);
 +
draw(D--B, dashed);
 +
draw(M--A);
 +
draw(M--B);
 +
draw(M--C);
 +
draw(M--D, dashed);
 +
 
 +
draw(M--A--D--cycle, blue);
 +
draw(M--B--D--cycle, green);
 +
draw(M--C--D--cycle, red);
 +
 
 +
draw((1.5,1.3)--(1.7,1.3)--(1.7,1.1));
 +
 
 +
dot(A,linewidth(4.5));
 +
dot(B,linewidth(4.5));
 +
dot(C,linewidth(4.5));
 +
dot(D,linewidth(4.5));
 +
dot(M,linewidth(4.5));
 +
 
 +
label("$A$", A, W);
 +
label("$B$", B, SE);
 +
label("$C$", C, E);
 +
label("$D$", D, NW);
 +
label("$M$", M, N);
 +
 
 +
label("$x$", midpoint(M--A), NW, red);
 +
label("$x+4$", midpoint(M--B), SE, red);
 +
label("$x+2$", midpoint(M--C), NE, red);
 +
label("$a$", midpoint(A--D), W, red);
 +
label("$b$", midpoint(A--B), S, red);
 +
label("$I$", midpoint(M--D), E, red);
 +
</asy>
 +
 
 +
The following equations could be obtained from Pythagorean Theorem.
 +
<cmath>
 +
\begin{align*}
 +
    I^2+a^2&=x^2 \\
 +
    I^2+b^2&=(x+2)^2 \\
 +
    I^2+a^2+b^2&=(x+4)^2 \\
 +
\end{align*}
 +
</cmath>
 +
Because <math>x</math> and <math>I</math> are integers, writing an equation in terms of only <math>x</math> and <math>I</math> may be beneficial for trial and error.
 +
<cmath>
 +
\begin{align*}
 +
    x^2+(x+2)^2&=(x+4)^2+I^2 \\
 +
    2x^2+4x+4&=x^2+8x+16+I^2 \\
 +
    x^2-4x-12&=I^2 \\
 +
    (x-6)(x+2)&=I^2
 +
\end{align*}
 +
</cmath>
 +
<math>x=7</math> seems valid since <math>I=3</math> when <math>x=7</math>. Therefore, when <math>x=7</math>, <math>a=2\sqrt{10}</math> and <math>b=6\sqrt{2}</math>. We could double check that <math>40+72+9=11^2</math>. Thereby,
 +
<cmath>
 +
\frac{a\cdot b\cdot I}{3}=\frac{2\sqrt{10}\cdot6\sqrt{2}\cdot3}{3}=\boxed{\textbf{(A) }24\sqrt5}.
 +
</cmath>
 +
 
 +
~MaPhyCom
 +
 
 +
==Video Solution (Fast! Just 4 min!)==
 +
https://youtu.be/Bo2EvRZdRnA
 +
 
 +
~<i>Education, the Study of Everything</i>
 +
 
 +
==Video Solution by Hawk Math==
 +
https://www.youtube.com/watch?v=p4iCAZRUESs
 +
 
 +
== Video Solution by OmegaLearn (Pythagorean Theorem and Volume of Pyramid) ==
 +
https://youtu.be/4_Oqp_ECLRw
 +
 
 +
~pi_is_3.14
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021|ab=B|num-b=13|num-a=15}}
 
{{AMC12 box|year=2021|ab=B|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 05:13, 4 June 2025

Problem

Let $ABCD$ be a rectangle and let $\overline{DM}$ be a segment perpendicular to the plane of $ABCD$. Suppose that $\overline{DM}$ has integer length, and the lengths of $\overline{MA},\overline{MC},$ and $\overline{MB}$ are consecutive odd positive integers (in this order). What is the volume of pyramid $MABCD?$

$\textbf{(A) }24\sqrt5 \qquad \textbf{(B) }60 \qquad \textbf{(C) }28\sqrt5\qquad \textbf{(D) }66 \qquad \textbf{(E) }8\sqrt{70}$

Solution 1

Let $MA=a$ and $MD=d.$ It follows that $MC=a+2$ and $MB=a+4.$

As shown below, note that $\triangle MAD$ and $\triangle MBC$ are both right triangles. [asy] size(300); import graph3; import solids;  currentprojection=orthographic((0.5,-0.25,-0.5)); triple A, B, C, D, M; A = (-2sqrt(10),0,0); B = (-2sqrt(10),-6sqrt(2),0); C = (0,-6sqrt(2),0); D = (0,0,0); M = (0,0,3); draw(surface(M--A--D--cycle),yellow); draw(surface(M--B--C--cycle),yellow); draw(D--A--B--C^^A--M^^B--M^^C--M^^D--M); draw(C--D,dashed); dot(A^^B^^C^^D^^M,linewidth(4.5)); label("$A$",A,2*dir(A-B)); label("$B$",B,2*dir(B-A)); label("$C$",C,2*dir(C-D)); label("$D$",D,2*dir(D-C)); label("$M$",M,2*dir((1,1,0))); label("$a$",midpoint(M--A),2*dir((-1,-1,0)),red); label("$d$",midpoint(M--D),2*dir((1,1,0)),red); label("$a+2$",midpoint(M--C),2*dir((1,-1,0)),red); label("$a+4$",midpoint(M--B),2*dir((-1,1,0)),red); [/asy] By the Pythagorean Theorem, we have \begin{alignat*}{6} AD^2 &= MA^2 - MD^2 &&= a^2 - d^2, \\ BC^2 &= MB^2 - MC^2 &&= (a+4)^2 - (a+2)^2. \end{alignat*} Since $AD=BC$ in rectangle $ABCD,$ we equate the expressions for $AD^2$ and $BC^2,$ then rearrange and factor: \begin{align*} a^2 - d^2 &= (a+4)^2 - (a+2)^2 \\ a^2 - d^2 &= 4a + 12 \\ a^2 - 4a - d^2 &= 12 \\ (a-2)^2 - d^2 &= 16 \\ (a+d-2)(a-d-2) &= 16. \end{align*} As $a+d-2$ and $a-d-2$ have the same parity, we get $a+d-2=8$ and $a-d-2=2,$ from which $(a,d)=(7,3).$

Applying the Pythagorean Theorem to right $\triangle MAD$ and right $\triangle MCD,$ we obtain $AD=2\sqrt{10}$ and $CD=6\sqrt2,$ respectively.

Let the brackets denote areas. Together, the volume of pyramid $MABCD$ is \[\frac13\cdot [ABCD]\cdot MD = \frac13\cdot (AD\cdot CD)\cdot MD = \boxed{\textbf{(A) }24\sqrt5}.\] ~Lopkiloinm ~MRENTHUSIASM

Solution 2

Let $AD=b$, $CD=a$, $MD=x$, $MC=t$. It follows that $MA=t-2$ and $MB=t+2$.

We have three equations: \begin{align*} a^2 + x^2 &= t^2, \\ a^2 + b^2 + x^2 &= t^2 + 4t + 4, \\ b^2 + x^2 &= t^2 - 4t + 4. \end{align*} Substituting the first and third equations into the second equation, we get: \begin{align*} t^2 - 8t - x^2 &= 0 \\ (t-4)^2 - x^2 &= 16 \\ (t-4-x)(t-4+x) &= 16. \end{align*} Therefore, we have $t = 9$ and $x = 3$.

Solving for other values, we get $b = 2\sqrt{10}$, $a = 6\sqrt{2}$. The volume is then \[\frac{1}{3} abx = \boxed{\textbf{(A) }24\sqrt5}.\]

~jamess2022 (burntTacos)

Solution 3

First and foremost, the diagram must be drawn. [asy] import graph;  size(250);  pair A = (0,0); pair B = (4.5,0); pair C = (6,1.1); pair D = (1.5,1.1); pair M = (1.5,3.45);  draw(A--B); draw(C--B); draw(A--D, dashed); draw(C--D, dashed); draw(M--A); draw(M--B); draw(M--C); draw(M--D, dashed);  draw((1.5,1.3)--(1.7,1.3)--(1.7,1.1));  dot(A,linewidth(4.5)); dot(B,linewidth(4.5)); dot(C,linewidth(4.5)); dot(D,linewidth(4.5)); dot(M,linewidth(4.5));  label("$A$", A, W); label("$B$", B, SE); label("$C$", C, E); label("$D$", D, NW); label("$M$", M, N);  label("$x$", midpoint(M--A), NW, red); label("$x+4$", midpoint(M--B), SE, red); label("$x+2$", midpoint(M--C), NE, red); label("$a$", midpoint(A--D), W, red); label("$b$", midpoint(A--B), S, red); label("$I$", midpoint(M--D), E, red); [/asy] With the diagram, an impulse to utilize Pythagorean theorem is created. Thereby, the shaded right triangles may be used. [asy] import graph;  size(250);  pair A = (0,0); pair B = (4.5,0); pair C = (6,1.1); pair D = (1.5,1.1); pair M = (1.5,3.45);  draw(A--B); draw(C--B); draw(A--D, dashed); draw(C--D, dashed); draw(D--B, dashed); draw(M--A); draw(M--B); draw(M--C); draw(M--D, dashed);  draw(M--A--D--cycle, blue); draw(M--B--D--cycle, green); draw(M--C--D--cycle, red);  draw((1.5,1.3)--(1.7,1.3)--(1.7,1.1));  dot(A,linewidth(4.5)); dot(B,linewidth(4.5)); dot(C,linewidth(4.5)); dot(D,linewidth(4.5)); dot(M,linewidth(4.5));  label("$A$", A, W); label("$B$", B, SE); label("$C$", C, E); label("$D$", D, NW); label("$M$", M, N);  label("$x$", midpoint(M--A), NW, red); label("$x+4$", midpoint(M--B), SE, red); label("$x+2$", midpoint(M--C), NE, red); label("$a$", midpoint(A--D), W, red); label("$b$", midpoint(A--B), S, red); label("$I$", midpoint(M--D), E, red); [/asy]

The following equations could be obtained from Pythagorean Theorem. \begin{align*}     I^2+a^2&=x^2 \\     I^2+b^2&=(x+2)^2 \\     I^2+a^2+b^2&=(x+4)^2 \\ \end{align*} Because $x$ and $I$ are integers, writing an equation in terms of only $x$ and $I$ may be beneficial for trial and error. \begin{align*}     x^2+(x+2)^2&=(x+4)^2+I^2 \\     2x^2+4x+4&=x^2+8x+16+I^2 \\     x^2-4x-12&=I^2 \\     (x-6)(x+2)&=I^2 \end{align*} $x=7$ seems valid since $I=3$ when $x=7$. Therefore, when $x=7$, $a=2\sqrt{10}$ and $b=6\sqrt{2}$. We could double check that $40+72+9=11^2$. Thereby, \[\frac{a\cdot b\cdot I}{3}=\frac{2\sqrt{10}\cdot6\sqrt{2}\cdot3}{3}=\boxed{\textbf{(A) }24\sqrt5}.\]

~MaPhyCom

Video Solution (Fast! Just 4 min!)

https://youtu.be/Bo2EvRZdRnA

~Education, the Study of Everything

Video Solution by Hawk Math

https://www.youtube.com/watch?v=p4iCAZRUESs

Video Solution by OmegaLearn (Pythagorean Theorem and Volume of Pyramid)

https://youtu.be/4_Oqp_ECLRw

~pi_is_3.14

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png