During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "Menelaus' theorem"

(Created page with "'''Menelaus' theorem''' deals with the collinearity of points on each of the three sides (extended when necessary) of a triangle. It is named for Menelaus of Alexandri...")
 
(Tag: New redirect)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Menelaus' theorem''' deals with the [[collinearity]] of points on each of the three sides (extended when necessary) of a [[triangle]].
+
#REDIRECT [[Menelaus' Theorem]]
It is named for Menelaus of Alexandria.
 
 
 
== Statement ==
 
 
 
If line <math>PQ</math> intersecting <math>AB</math> on <math>\triangle ABC</math>, where <math>P</math> is on <math>BC</math>, <math>Q</math> is on the extension of <math>AC</math>, and <math>R</math> on the intersection of <math>PQ</math> and <math>AB</math>, then
 
<cmath>\frac{PB}{CP} \cdot \frac{QC}{QA} \cdot \frac{AR}{RB} = 1.</cmath>
 
 
 
<center><asy>
 
unitsize(16);
 
defaultpen(fontsize(8));
 
pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R;
 
draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75);
 
draw((7,6)--(6,8)--(4,0));
 
R=intersectionpoint(A--B,Q--P);
 
dot(A^^B^^C^^P^^Q^^R);
 
label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1));
 
</asy></center>
 
 
 
Alternatively, when written with [[directed segment|directed segments]], the theorem becomes <math>BP\cdot CQ\cdot AR = PC\cdot QA\cdot RB</math>.
 
 
 
== Proofs ==
 
 
 
===Proof with Similar Triangles===
 
 
 
Draw a line parallel to <math>QP</math> through <math>A</math> to intersect <math>BC</math> at <math>K</math>:
 
<center><asy>
 
unitsize(16);
 
defaultpen(fontsize(8));
 
pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R, K=(5.5,0);
 
draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75);
 
draw((7,6)--(6,8)--(4,0));
 
draw(A--K, dashed);
 
R=intersectionpoint(A--B,Q--P);
 
dot(A^^B^^C^^P^^Q^^R^^K);
 
label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1));
 
label("K",K,(0,-1));
 
</asy></center>
 
<math>\triangle RBP \sim \triangle ABK \implies \frac{AR}{RB}=\frac{KP}{PB}</math>
 
 
 
<math>\triangle QCP \sim \triangle ACK \implies \frac{QC}{QA}=\frac{CP}{KP}</math>
 
 
 
Multiplying the two equalities together to eliminate the <math>PK</math> factor, we get:
 
 
 
<math>\frac{AR}{RB}\cdot\frac{QC}{QA}=\frac{CP}{PB}\implies \frac{AR}{RB}\cdot\frac{QC}{QA}\cdot\frac{PB}{CP}=1</math>
 
 
 
===Proof with [[Barycentric coordinates]]===
 
 
 
Disclaimer: This proof is not nearly as elegant as the above one. It uses a bash-type approach, as barycentric coordinate proofs tend to be.
 
 
 
Suppose we give the points <math>P, Q, R</math> the following coordinates:
 
 
 
<math>P: (0, P, 1-P)</math>
 
 
 
<math>R: (R , 1-R, 0)</math>
 
 
 
<math>Q: (1-Q ,0 , Q)</math>
 
 
 
Note that this says the following:
 
 
 
<math>\frac{CP}{PB}=\frac{1-P}{P}</math>
 
 
 
<math>\frac{BR}{AR}=\frac{1-R}{R}</math>
 
 
 
<math>\frac{QA}{QC}=\frac{1-Q}{Q}</math>
 
 
 
The line through <math>R</math> and <math>P</math> is given by:
 
<math>\begin{vmatrix} X & 0 & R \\ Y & P & 1-R\\ Z & 1-P & 0 \end{vmatrix} = 0</math>
 
 
 
 
 
which yields, after simplification,
 
 
 
<cmath>-X\cdot (R-1)(P-1)+Y\cdot R(1-P)-Z\cdot PR = 0</cmath>
 
 
 
<cmath>Z\cdot PR = -X\cdot (R-1)(P-1)+Y\cdot R(1-P).</cmath>
 
 
 
Plugging in the coordinates for <math>Q</math> yields <math>(Q-1)(R-1)(P-1) = QPR</math>. From <math>\frac{CP}{PB}=\frac{1-P}{P},</math> we have <cmath>P=\frac{(1-P)\cdot PB}{CP}.</cmath> Likewise, <cmath>R=\frac{(1-R)\cdot AR}{BR}</cmath> and <cmath>Q=\frac{(1-Q)\cdot QC}{QA}.</cmath>
 
 
 
 
 
Substituting these values yields <cmath>(Q-1)(R-1)(P-1) = \frac{(1-Q)\cdot QC \cdot (1-P) \cdot PB \cdot (1-R) \cdot AR}{QA\cdot CP\cdot BR}</cmath> which simplifies to <math>QA\cdot CP \cdot BR = -QC \cdot AR \cdot PB.</math>
 
 
 
QED
 
 
 
===Proof with [[Mass points]]===
 
First let's define some masses. 
 
 
 
<math>B_{m_{1}}</math>, <math>C_{m_{2}}</math>, and <math>Q_{m_{3}}</math>
 
 
 
By Mass Points:
 
<cmath>BP\cdot m_{1}=PC\cdot m_{2} \implies \frac{BP}{CP}=\frac{m_{2}}{m_{1}}</cmath>
 
<cmath>\frac{QC}{QA}=\frac{AC+QA}{QA}=1+\frac{AC}{QA}=1+\frac{m_{3}}{m_{2}}=\frac{m_{2}}{m_{2}}+\frac{m_{3}}{m_{2}}=\frac{m_{3}+m_{2}}{m_{2}}</cmath>
 
The mass at A is <math>m_{3}+m_{2}</math>
 
<cmath>AR\cdot (m_{3}+m_{2}) = RB \cdot m_{1} \implies \frac{AR}{RB} = \frac{m_{1}}{m_{3}+m_{2}} </cmath>
 
Multiplying them together,<math>{\;\; \frac{BP}{CP} \cdot \frac{QC}{QA} \cdot \frac{AR}{RB} = \frac{{m_{2}}}{{m_{1}}} \cdot \frac{{m_{3}+m_{2}}}{{m_{2}}} \cdot \frac{{m_{1}}}{{m_{3}+m_{2}}} = 1}</math>
 
 
 
== Converse ==
 
 
 
The converse of Menelaus' theorem is also true.  If <math>\frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AR}{RB} = 1</math> in the below diagram, then <math>P, Q, R</math> are [[collinear]].  The converse is useful in proving that three points are collinear.
 
 
 
<center><asy>
 
unitsize(16);
 
defaultpen(fontsize(8));
 
pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R;
 
draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75);
 
draw((7,6)--(6,8)--(4,0));
 
R=intersectionpoint(A--B,Q--P);
 
dot(A^^B^^C^^P^^Q^^R);
 
label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1));
 
</asy></center>
 
 
 
== See Also ==
 
* [[Ceva's theorem]]
 
* [[Stewart's Theorem]]
 
 
 
[[Category:Theorems]]
 
 
 
[[Category:Geometry]]
 

Latest revision as of 19:28, 28 April 2025

Redirect to: