Difference between revisions of "1978 AHSME Problems/Problem 23"
(→Problem) |
m (→Solution) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
<math>\textbf{(A) }1\qquad \textbf{(B) }\frac{\sqrt{2}}{2}\qquad \textbf{(C) }\frac{\sqrt{3}}{2}\qquad \textbf{(D) }4-2\sqrt{3}\qquad \textbf{(E) }\frac{1}{2}+\frac{\sqrt{3}}{4}</math> | <math>\textbf{(A) }1\qquad \textbf{(B) }\frac{\sqrt{2}}{2}\qquad \textbf{(C) }\frac{\sqrt{3}}{2}\qquad \textbf{(D) }4-2\sqrt{3}\qquad \textbf{(E) }\frac{1}{2}+\frac{\sqrt{3}}{4}</math> | ||
− | ==Solution== | + | == Solution == |
− | + | ||
+ | Place square <math>ABCD</math> on the coordinate plane with <math>A</math> at the origin. | ||
+ | |||
+ | In polar form, line <math>BD</math> is <math>r\sin(\theta) = \sqrt{1 + \sqrt{3}} - r \cos(\theta)</math> and line <math>AF</math> is <math>\theta = \frac{\pi}{3}</math>. | ||
+ | |||
+ | This means that the length from the origin to the intersection (<math>r</math>) is <math>r\frac{\sqrt{3}}{2} = \sqrt{1 + \sqrt{3}} - \frac{r}{2}</math> | ||
+ | |||
+ | Solving for <math>r</math>, you get: <math>r = \frac{2}{\sqrt{1 + \sqrt{3}}}</math> | ||
+ | |||
+ | Using the formula for area of a triangle (<math>A = \frac{ab\sin{C}}{2}</math>), you get <math>A = \frac{(\frac{2}{\sqrt{1 + \sqrt{3}}})(\sqrt{1 + \sqrt{3}}) \sin(\frac{\pi}{3})}{2} = \frac{\sqrt{3}}{2}</math> | ||
+ | |||
+ | Getting <math>\textbf{C}</math> as the answer |
Latest revision as of 12:33, 17 August 2025
Problem
Vertex of equilateral
is in the interior of square
, and
is the point of intersection of diagonal
and line segment
. If length
is
then the area of
is
Solution
Place square on the coordinate plane with
at the origin.
In polar form, line is
and line
is
.
This means that the length from the origin to the intersection () is
Solving for , you get:
Using the formula for area of a triangle (), you get
Getting as the answer