Difference between revisions of "1980 AHSME Problems/Problem 17"

(Solution)
(Solution 2)
 
(6 intermediate revisions by 3 users not shown)
Line 6: Line 6:
  
  
== Solution ==
 
<math>(n+i)^4=n^4+4in^3-6n^2-4in+1</math>, and this has to be an integer, so the sum of the imaginary parts must be <math>0</math>. <cmath>4in^3-4in=0</cmath>  <cmath> 4in^3=4in</cmath> <cmath>n^3=n</cmath>
 
Since <math>n^3=n</math>, there are <math>\boxed{3}</math> solutions for <math>n</math>, <math>0</math> and <math>\pm1</math>.
 
  
-aopspandy
+
== Solution 1 ==
 +
Expanding <math>(n+i)^4</math> yields <math>n^4+4in^3-6n^2-4in+1 = (n^4-6n^2+1) + (4n^3-4n)i</math>.  This quantity is an integer if and only if <math>4n^3 - 4n = 4n(n+1)(n-1) = 0</math>, that is, if <math>n \in \{0, 1, -1\}</math>.  Therefore, there are <math>\boxed{(\textbf{D})\ 3}</math> such values of <math>n</math>.
 +
 
 +
-aopspandy, edited by j314andrews
 +
 
 +
== Solution 2 ==
 +
For <math>(n+i)^4</math> to be a real number, <math>n+i</math> must be a scalar multiple of an eighth root of unity, that is, <math>n+i = r\left(\cos \frac{k\pi}{4} + i \sin \frac{k\pi}{4}\right)</math> where <math>r \geq 0</math> is a real number and <math>k</math> is an integer such that <math>0 \leq k \leq 7</math>.  So <math>r \sin \frac{k\pi}{4} = 1</math> and <math>\sin \frac{k\pi}{4}</math> is positive.  Therefore, <math>k \in \{1, 2, 3\}</math>.
 +
 
 +
If <math>k = 1</math>, <math>r = \frac{1}{\sin\frac{\pi}{4}} = \sqrt{2}</math>, <math>n = \sqrt{2}\cos\frac{\pi}{4} = 1</math> and <math>(n+i)^4 = (1+i)^4 = -4</math>.
 +
 
 +
If <math>k = 2</math>, <math>r = \frac{1}{\sin\frac{\pi}{2}} = 1</math>, <math>n = \cos\frac{\pi}{2} = 0</math> and <math>(n+i)^4 = i^4 = 1</math>. 
 +
 
 +
If <math>k = 3</math>, <math>r = \frac{1}{\sin\frac{3\pi}{4}} = \sqrt{2}</math>, <math>n = \sqrt{2}\cos\frac{3\pi}{4} = -1</math> and <math>(n+i)^4 = (-1+i)^4 = -4</math>. 
 +
 
 +
In all these cases, <math>(n+i)^4</math> is an integer, so <math>\{1, 0, -1\}</math> are the <math>\boxed{(\mathbf{D})\ 3}</math> possible values of <math>n</math>.
 +
 
 +
~ jaspersun, edited by j314andrews
  
 
== See also ==
 
== See also ==

Latest revision as of 13:07, 15 August 2025

Problem

Given that $i^2=-1$, for how many integers $n$ is $(n+i)^4$ an integer?

$\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ 3 \qquad \text{(E)} \ 4$


Solution 1

Expanding $(n+i)^4$ yields $n^4+4in^3-6n^2-4in+1 = (n^4-6n^2+1) + (4n^3-4n)i$. This quantity is an integer if and only if $4n^3 - 4n = 4n(n+1)(n-1) = 0$, that is, if $n \in \{0, 1, -1\}$. Therefore, there are $\boxed{(\textbf{D})\ 3}$ such values of $n$.

-aopspandy, edited by j314andrews

Solution 2

For $(n+i)^4$ to be a real number, $n+i$ must be a scalar multiple of an eighth root of unity, that is, $n+i = r\left(\cos \frac{k\pi}{4} + i \sin \frac{k\pi}{4}\right)$ where $r \geq 0$ is a real number and $k$ is an integer such that $0 \leq k \leq 7$. So $r \sin \frac{k\pi}{4} = 1$ and $\sin \frac{k\pi}{4}$ is positive. Therefore, $k \in \{1, 2, 3\}$.

If $k = 1$, $r = \frac{1}{\sin\frac{\pi}{4}} = \sqrt{2}$, $n = \sqrt{2}\cos\frac{\pi}{4} = 1$ and $(n+i)^4 = (1+i)^4 = -4$.

If $k = 2$, $r = \frac{1}{\sin\frac{\pi}{2}} = 1$, $n = \cos\frac{\pi}{2} = 0$ and $(n+i)^4 = i^4 = 1$.

If $k = 3$, $r = \frac{1}{\sin\frac{3\pi}{4}} = \sqrt{2}$, $n = \sqrt{2}\cos\frac{3\pi}{4} = -1$ and $(n+i)^4 = (-1+i)^4 = -4$.

In all these cases, $(n+i)^4$ is an integer, so $\{1, 0, -1\}$ are the $\boxed{(\mathbf{D})\ 3}$ possible values of $n$.

~ jaspersun, edited by j314andrews

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png