Difference between revisions of "2021 JMPSC Sprint Problems/Problem 20"
(→Solution) |
|||
| (5 intermediate revisions by 3 users not shown) | |||
| Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
Let <math>258=a</math>. Then, <math>257=a-1</math> and <math>256=a-2</math>. We substitute these values into expression <math>(1)</math> to get <cmath>\sqrt{\frac{(a-1) \Delta (a-2)}{a}}.</cmath> Recall the definition for the operation <math>\Delta</math>; using this, we simplify our expression to <cmath>\sqrt{\frac{(a-1)^3+(a-2)^2+(a-1)+(a-2)}{a}}.</cmath> We have <math>(a-1)^3=a^3-3a^2+3a-1</math> and <math>(a-2)^2=a^2-4a+4</math>, so we can expand the numerator of the fraction within the square root as <math>a^3-3a^2+3a-1+a^2-4a+4+a-1+a-2=a^3-2a^2+a</math> to get <cmath>\sqrt{\frac{a^3-2a^2+a}{a}}=\sqrt{a^2-2a+1}=\sqrt{(a-1)^2}=a-1=\boxed{257}.</cmath> ~samrocksnature | Let <math>258=a</math>. Then, <math>257=a-1</math> and <math>256=a-2</math>. We substitute these values into expression <math>(1)</math> to get <cmath>\sqrt{\frac{(a-1) \Delta (a-2)}{a}}.</cmath> Recall the definition for the operation <math>\Delta</math>; using this, we simplify our expression to <cmath>\sqrt{\frac{(a-1)^3+(a-2)^2+(a-1)+(a-2)}{a}}.</cmath> We have <math>(a-1)^3=a^3-3a^2+3a-1</math> and <math>(a-2)^2=a^2-4a+4</math>, so we can expand the numerator of the fraction within the square root as <math>a^3-3a^2+3a-1+a^2-4a+4+a-1+a-2=a^3-2a^2+a</math> to get <cmath>\sqrt{\frac{a^3-2a^2+a}{a}}=\sqrt{a^2-2a+1}=\sqrt{(a-1)^2}=a-1=\boxed{257}.</cmath> ~samrocksnature | ||
| + | |||
| + | |||
| + | ==Solution 2== | ||
| + | |||
| + | Basically the same as above, but instead we can let <math>257 = 256 + 1</math>. Then we have | ||
| + | <cmath>\sqrt{\frac{(256+1)(256^2 + 256 + 1) + 1(256^2 + 257) + 256}{258}},</cmath> | ||
| + | <cmath>\sqrt{\frac{258(256^2 + 257) + 256}{258}},</cmath> | ||
| + | <cmath>\sqrt{256^2 + 256 + 256 + 1} =</cmath> <cmath>\sqrt{256^2 + 2\cdot256 + 1} =</cmath> <cmath>\sqrt{(256+1)^2} =</cmath> <cmath>\sqrt{(257^2)}</cmath> | ||
| + | |||
| + | which equals <math>\boxed{257}</math>. | ||
| + | |||
| + | |||
| + | ~~abhinavg0627 | ||
| + | |||
| + | == Note: == | ||
| + | |||
| + | <math>257^3 = 16974593</math>, <math>256^2 = 65536</math>, and <math>257^2 = 66049</math>. | ||
| + | |||
| + | == Solution 3 == | ||
| + | Notice that <math>x=y+1</math>, substituting this in, we get <math>x^2(x+1)</math>. Therefore, <math>\sqrt{\frac{257^2(258)}{258}}=\boxed{257}</math> | ||
| + | |||
| + | - kante314 - | ||
| + | |||
| + | ==See also== | ||
| + | #[[2021 JMPSC Sprint Problems|Other 2021 JMPSC Sprint Problems]] | ||
| + | #[[2021 JMPSC Sprint Answer Key|2021 JMPSC Sprint Answer Key]] | ||
| + | #[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]] | ||
| + | {{JMPSC Notice}} | ||
Latest revision as of 09:00, 12 July 2021
Problem
For all integers
and
, define the operation
as
Find
Solution
Let
. Then,
and
. We substitute these values into expression
to get
Recall the definition for the operation
; using this, we simplify our expression to
We have
and
, so we can expand the numerator of the fraction within the square root as
to get
~samrocksnature
Solution 2
Basically the same as above, but instead we can let
. Then we have
which equals
.
~~abhinavg0627
Note:
,
, and
.
Solution 3
Notice that
, substituting this in, we get
. Therefore,
- kante314 -
See also
The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition.