|
|
| (4 intermediate revisions by 2 users not shown) |
| Line 1: |
Line 1: |
| − | == Problem ==
| + | #REDIRECT [[2006 AIME I Problems/Problem 1]] |
| − | | |
| − | In quadrilateral <math> ABCD , \angle B </math> is a right angle, diagonal <math> \overline{AC} </math> is perpendicular to <math> \overline{CD}, AB=18, BC=21, </math> and <math> CD=14. </math> Find the perimeter of <math> ABCD. </math>
| |
| − | | |
| − | == Solution ==
| |
| − | | |
| − | From the problem statement, we construct the following diagram: <div style="text-align:center">[[Image:Aime06i.1.PNG]]</div>
| |
| − | | |
| − | Using the [[Pythagorean Theorem]]:
| |
| − | | |
| − | <div style="text-align:center"><math> (AD)^2 = (AC)^2 + (CD)^2 </math></div>
| |
| − | | |
| − | <div style="text-align:center"><math> (AC)^2 = (AB)^2 + (BC)^2 </math></div>
| |
| − | | |
| − | Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>:
| |
| − | | |
| − | <div style="text-align:center"><math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math></div>
| |
| − | | |
| − | Plugging in the given information:
| |
| − | | |
| − | <div style="text-align:center"><math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math></div>
| |
| − | | |
| − | <div style="text-align:center"><math> (AD)^2 = 961 </math></div>
| |
| − | | |
| − | <div style="text-align:center"><math> (AD)= 31 </math></div>
| |
| − | | |
| − | So the perimeter is <math> 18+21+14+31=84 </math>, and the answer is <math>084</math>.
| |
| − | | |
| − | == See also ==
| |
| − | *[[2006 AIME II Problems]]
| |
| − | | |
| − | [[Category:Intermediate Geometry Problems]]
| |