Difference between revisions of "2022 AMC 8 Problems/Problem 3"
MRENTHUSIASM (talk | contribs) (Created page with "==Problem== When three positive integers <math>a</math>, <math>b</math>, and <math>c</math> are multiplied together, their product is <math>100</math>. Suppose <math>a < b <...") |
(→Video Solution (A Clever Explanation You’ll Get Instantly)) |
||
| (43 intermediate revisions by 17 users not shown) | |||
| Line 3: | Line 3: | ||
When three positive integers <math>a</math>, <math>b</math>, and <math>c</math> are multiplied together, their product is <math>100</math>. Suppose <math>a < b < c</math>. In how many ways can the numbers be chosen? | When three positive integers <math>a</math>, <math>b</math>, and <math>c</math> are multiplied together, their product is <math>100</math>. Suppose <math>a < b < c</math>. In how many ways can the numbers be chosen? | ||
| − | <math>\textbf{(A)} | + | <math>\textbf{(A) } 0 \qquad \textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4</math> |
| − | ==Solution== | + | ==Solution 1== |
| − | + | ||
| + | The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | ||
| + | It is clear that <math>10\leq c\leq50,</math> so we apply casework to <math>c:</math> | ||
| + | |||
| + | * If <math>c=10,</math> then <math>(a,b,c)=(2,5,10).</math> | ||
| + | |||
| + | * If <math>c=20,</math> then <math>(a,b,c)=(1,5,20).</math> | ||
| + | |||
| + | * If <math>c=25,</math> then <math>(a,b,c)=(1,4,25).</math> | ||
| + | |||
| + | * If <math>c=50,</math> then <math>(a,b,c)=(1,2,50).</math> | ||
| + | |||
| + | Together, the numbers <math>a,b,</math> and <math>c</math> can be chosen in <math>\boxed{\textbf{(E) } 4}</math> ways. | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
| + | |||
| + | ==Solution 2== | ||
| + | |||
| + | The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | ||
| + | We apply casework to <math>a</math>: | ||
| + | |||
| + | If <math>a=1</math>, then there are <math>3</math> cases: | ||
| + | |||
| + | * <math>b=2,c=50</math> | ||
| + | |||
| + | * <math>b=4,c=25</math> | ||
| + | |||
| + | * <math>b=5,c=20</math> | ||
| + | |||
| + | If <math>a=2</math>, then there is only <math>1</math> case: | ||
| + | |||
| + | * <math>b=5,c=10</math> | ||
| + | |||
| + | In total, there are <math>3+1=\boxed{\textbf{(E) } 4}</math> ways to choose distinct positive integer values of <math>a,b,c</math>. | ||
| + | |||
| + | ~MathFun1000 | ||
| + | |||
| + | ==Video Solution (A Creative Way To Think)== | ||
| + | https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=135 | ||
| + | ~hsnacademy | ||
| + | |||
| + | ==Video Solution 1 by Math-X (First understand the problem!!!)== | ||
| + | https://youtu.be/oUEa7AjMF2A?si=tkBYOey2NioTPPPq&t=221 | ||
| + | |||
| + | ~Math-X | ||
| + | |||
| + | ==Video Solution 2 (CREATIVE THINKING!!!)== | ||
| + | https://youtu.be/5-6zj2mBBSA | ||
| + | |||
| + | ~Education, the Study of Everything | ||
| + | |||
| + | ==Video Solution 3== | ||
| + | https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=142 | ||
| + | |||
| + | ~Interstigation | ||
| + | |||
| + | ==Video Solution 4== | ||
| + | https://youtu.be/LHnC_Wz6fOU | ||
| + | |||
| + | ~savannahsolver | ||
| + | |||
| + | ==Video Solution 5== | ||
| + | https://youtu.be/Q0R6dnIO95Y?t=98 | ||
| + | |||
| + | ~STEMbreezy | ||
| + | |||
| + | ==Video Solution 6== | ||
| + | https://www.youtube.com/watch?v=KkZ95iNlFyc | ||
| + | |||
| + | ~harungurcan | ||
| + | |||
| + | ==Video Solution 7 by Dr. David== | ||
| + | |||
| + | https://youtu.be/EbLGPhGVz6E | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2022|num-b=2|num-a=4}} | {{AMC8 box|year=2022|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
| + | |||
| + | [[Category:Introductory Number Theory Problems]] | ||
Latest revision as of 01:16, 3 November 2025
Contents
- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Video Solution (A Creative Way To Think)
- 5 Video Solution 1 by Math-X (First understand the problem!!!)
- 6 Video Solution 2 (CREATIVE THINKING!!!)
- 7 Video Solution 3
- 8 Video Solution 4
- 9 Video Solution 5
- 10 Video Solution 6
- 11 Video Solution 7 by Dr. David
- 12 See Also
Problem
When three positive integers
,
, and
are multiplied together, their product is
. Suppose
. In how many ways can the numbers be chosen?
Solution 1
The positive divisors of
are
It is clear that
so we apply casework to
- If
then 
- If
then 
- If
then 
- If
then 
Together, the numbers
and
can be chosen in
ways.
~MRENTHUSIASM
Solution 2
The positive divisors of
are
We apply casework to
:
If
, then there are
cases:
If
, then there is only
case:
In total, there are
ways to choose distinct positive integer values of
.
~MathFun1000
Video Solution (A Creative Way To Think)
https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=135 ~hsnacademy
Video Solution 1 by Math-X (First understand the problem!!!)
https://youtu.be/oUEa7AjMF2A?si=tkBYOey2NioTPPPq&t=221
~Math-X
Video Solution 2 (CREATIVE THINKING!!!)
~Education, the Study of Everything
Video Solution 3
https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=142
~Interstigation
Video Solution 4
~savannahsolver
Video Solution 5
https://youtu.be/Q0R6dnIO95Y?t=98
~STEMbreezy
Video Solution 6
https://www.youtube.com/watch?v=KkZ95iNlFyc
~harungurcan
Video Solution 7 by Dr. David
See Also
| 2022 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.