Difference between revisions of "2021 Fall AMC 12B Problems/Problem 13"
MRENTHUSIASM (talk | contribs) m (→Problem)  | 
				Lopkiloinm (talk | contribs)   (→Solution 4)  | 
				||
| (31 intermediate revisions by 4 users not shown) | |||
| Line 6: | Line 6: | ||
\frac{10}{11} \qquad\textbf{(E)}\ 1</math>  | \frac{10}{11} \qquad\textbf{(E)}\ 1</math>  | ||
| − | ==Solution   | + | ==Solution==  | 
Plugging in <math>c</math>, we get  | Plugging in <math>c</math>, we get  | ||
<cmath>\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}.</cmath>  | <cmath>\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}.</cmath>  | ||
| − | |||
| − | |||
Since <math>\sin(x+2\pi)=\sin(x),</math> <math>\sin(2\pi-x)=\sin(-x),</math> and <math>\sin(-x)=-\sin(x),</math> we get  | Since <math>\sin(x+2\pi)=\sin(x),</math> <math>\sin(2\pi-x)=\sin(-x),</math> and <math>\sin(-x)=-\sin(x),</math> we get  | ||
<cmath>\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{-10\pi}{11} \cdot \sin \frac{-4\pi}{11} \cdot \sin \frac{2\pi}{11} \cdot \sin \frac{8\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\boxed{\textbf{(E)}\ 1}.</cmath>  | <cmath>\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{12\pi}{11} \cdot \sin \frac{18\pi}{11} \cdot \sin \frac{24\pi}{11} \cdot \sin \frac{30\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\frac{\sin \frac{6\pi}{11} \cdot \sin \frac{-10\pi}{11} \cdot \sin \frac{-4\pi}{11} \cdot \sin \frac{2\pi}{11} \cdot \sin \frac{8\pi}{11}}{\sin \frac{2\pi}{11} \cdot \sin \frac{4\pi}{11} \cdot \sin \frac{6\pi}{11} \cdot \sin \frac{8\pi}{11} \cdot \sin \frac{10\pi}{11}}=\boxed{\textbf{(E)}\ 1}.</cmath>  | ||
~kingofpineapplz  | ~kingofpineapplz  | ||
| + | ~Ziyao7294 (minor edit)  | ||
| + | |||
| + | ==Solution 2==  | ||
| + | Eisenstein used such a quotient in his proof of [[quadratic reciprocity]]. Let <math>c=\frac{2\pi}{p}</math> where <math>p</math> is an odd prime number and <math>q</math> is any integer.  | ||
| + | |||
| + | Then <math>\dfrac{\sin(qc)\sin(2qc)\cdots\sin(\frac{p-1}{2}qc)}{\sin(c)\sin(2c)\cdots\sin(\frac{p-1}{2}c)}</math> is the Legendre symbol <math>\left(\frac{q}{p}\right)</math>. Legendre symbol is calculated using quadratic reciprocity which is <math>\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}</math>. The Legendre symbol <math>\left(\frac{3}{11}\right)=(-1)\left(\frac{11}{3}\right)=(-1)\left(\frac{-1}{3}\right)=(-1)(-1)=\boxed{\textbf{(E)}\ 1}</math>  | ||
| + | |||
| + | ~Lopkiloinm  | ||
| + | |||
| + | ==Solution 3==  | ||
| + | We have that <math>5^2 \equiv 3 \pmod{11}</math>, so 3 is a quadratic residue mod 11. For quadratic residues, their Legendre symbol which we know is the answer from Solution 2 is <math>\boxed{\textbf{(E)}\ 1}</math>  | ||
| + | |||
| + | ==Solution 4==  | ||
| + | We have <math>\zeta</math> be an 11th primitive root of unity. Then the quotient becomes <cmath>\frac{(\zeta^3-\zeta^{-3})(\zeta^6-\zeta^{-6})(\zeta^9-\zeta^{-9})(\zeta^{12}-\zeta^{-12})(\zeta^{15}-\zeta^{-15})}{(\zeta^1-\zeta^{-1})(\zeta^2-\zeta^{-2})(\zeta^3-\zeta^{-3})(\zeta^{4}-\zeta^{-4})(\zeta^{5}-\zeta^{-5})}</cmath> which we can use modular arithmetic to become <cmath>\frac{(\zeta^3-\zeta^{-3})(\zeta^{-5}-\zeta^{5})(\zeta^{-2}-\zeta^{2})(\zeta^{1}-\zeta^{-1})(\zeta^{4}-\zeta^{-4})}{(\zeta^1-\zeta^{-1})(\zeta^2-\zeta^{-2})(\zeta^3-\zeta^{-3})(\zeta^{4}-\zeta^{-4})(\zeta^{5}-\zeta^{-5})}</cmath> and we see that is <math>\boxed{\textbf{(E)}\ 1}</math>  | ||
| + | |||
| + | ~Lopkiloinm  | ||
| + | |||
| + | ==Video Solution (Just 2 min!)==  | ||
| + | https://youtu.be/S44IzCpzTeg  | ||
| + | |||
| + | ~<i>Education, the Study of Everything</i>  | ||
==See Also==  | ==See Also==  | ||
{{AMC12 box|year=2021 Fall|ab=B|num-a=14|num-b=12}}  | {{AMC12 box|year=2021 Fall|ab=B|num-a=14|num-b=12}}  | ||
{{MAA Notice}}  | {{MAA Notice}}  | ||
Latest revision as of 02:05, 1 February 2025
Contents
Problem
Let 
 What is the value of
Solution
Plugging in 
, we get
Since 
 
 and 
 we get
~kingofpineapplz ~Ziyao7294 (minor edit)
Solution 2
Eisenstein used such a quotient in his proof of quadratic reciprocity. Let 
 where 
 is an odd prime number and 
 is any integer.
Then 
 is the Legendre symbol 
. Legendre symbol is calculated using quadratic reciprocity which is 
. The Legendre symbol 
~Lopkiloinm
Solution 3
We have that 
, so 3 is a quadratic residue mod 11. For quadratic residues, their Legendre symbol which we know is the answer from Solution 2 is 
Solution 4
We have 
 be an 11th primitive root of unity. Then the quotient becomes 
 which we can use modular arithmetic to become 
 and we see that is 
~Lopkiloinm
Video Solution (Just 2 min!)
~Education, the Study of Everything
See Also
| 2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 12  | 
Followed by Problem 14  | 
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.