Difference between revisions of "2020 AMC 12A Problems/Problem 22"
m (→Solution 2 (DeMoivre's Formula)) |
m (→Solution 3) |
||
| (14 intermediate revisions by 5 users not shown) | |||
| Line 22: | Line 22: | ||
\sum_{n=0}^\infty\frac{a_nb_n}{7^n} &= \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} \\ | \sum_{n=0}^\infty\frac{a_nb_n}{7^n} &= \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} \\ | ||
&=\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta)\\ | &=\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta)\\ | ||
| − | &=\frac{1}{2} \Im \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right). | + | &=\frac{1}{2} \operatorname{Im} \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right). |
\end{align*}</cmath> | \end{align*}</cmath> | ||
Aha! <math>\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} </math> is a geometric sequence that evaluates to <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}}</math>! Now we can quickly see that <cmath>\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5},</cmath> <cmath>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}.</cmath> Therefore, <cmath>\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i.</cmath> The imaginary part is <math>\frac{7}{8}</math>, so our answer is <math>\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}} \Rightarrow \textbf{(B)}</math>. | Aha! <math>\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} </math> is a geometric sequence that evaluates to <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}}</math>! Now we can quickly see that <cmath>\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5},</cmath> <cmath>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}.</cmath> Therefore, <cmath>\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i.</cmath> The imaginary part is <math>\frac{7}{8}</math>, so our answer is <math>\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}} \Rightarrow \textbf{(B)}</math>. | ||
| − | ~AopsUser101 | + | ~AopsUser101 |
== Solution 3 == | == Solution 3 == | ||
| − | Clearly <math>a_n=\ | + | Clearly <math>a_n=\frac{(2+i)^n+(2-i)^n}{2}, b_n=\frac{(2+i)^n-(2-i)^n}{2i}</math>. So we have <math>\sum_{n\ge 0}\frac{a_nb_n}{7^n}=\sum_{n\ge 0}\frac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4i(7^n)}</math>. By linearity, we have the latter is equivalent to <math>\frac{1}{4i}\sum_{n\ge 0}\frac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</math>. Expanding the summand yields |
| − | + | \begin{align*} | |
| − | \ | + | \frac{1}{4i}\sum_{n\ge 0}\frac{(3+4i)^n-(3-4i)^n}{7^n}&=\frac{1}{4}[\frac{1}{1-(\frac{3+4i}{7})}-\frac{1}{1-(\frac{3-4i}{7})}] \\ |
| − | &=\ | + | &=\frac{1}{4i}[\frac{7}{7-(3+4i)}-\frac{7}{7-(3-4i)}] \\ |
| − | &=\ | + | &=\frac{1}{4}[\frac{7}{4-4i}-\frac{7}{4+4i}] \\ |
| − | &=\ | + | &=\frac{1}{4i}[\frac{7(4+4i)}{32}-\frac{7(4-4i)}{32}]=\frac{1}{4}\cdot \frac{56}{32} \\ |
| − | &=\boxed{\ | + | &=\boxed{\frac{7}{16}}\textbf{(B)} |
| − | \end{align*} | + | \end{align*} |
-vsamc | -vsamc | ||
== Video Solution by Richard Rusczyk == | == Video Solution by Richard Rusczyk == | ||
| − | https://www.youtube.com/watch?v=OdSTfCDOh5A | + | https://www.youtube.com/watch?v=OdSTfCDOh5A |
| + | |||
- AMBRIGGS | - AMBRIGGS | ||
Latest revision as of 22:14, 2 November 2025
Contents
Problem
Let
and
be the sequences of real numbers such that
for all integers
, where
. What is
Solution 1
Square the given equality to yield
so
and
Solution 2 (DeMoivre's Formula)
Note that
. Let
, then, we know that
so
Therefore,
Aha!
is a geometric sequence that evaluates to
! Now we can quickly see that
Therefore,
The imaginary part is
, so our answer is
.
~AopsUser101
Solution 3
Clearly
. So we have
. By linearity, we have the latter is equivalent to
. Expanding the summand yields
\begin{align*}
\frac{1}{4i}\sum_{n\ge 0}\frac{(3+4i)^n-(3-4i)^n}{7^n}&=\frac{1}{4}[\frac{1}{1-(\frac{3+4i}{7})}-\frac{1}{1-(\frac{3-4i}{7})}] \\
&=\frac{1}{4i}[\frac{7}{7-(3+4i)}-\frac{7}{7-(3-4i)}] \\
&=\frac{1}{4}[\frac{7}{4-4i}-\frac{7}{4+4i}] \\
&=\frac{1}{4i}[\frac{7(4+4i)}{32}-\frac{7(4-4i)}{32}]=\frac{1}{4}\cdot \frac{56}{32} \\
&=\boxed{\frac{7}{16}}\textbf{(B)}
\end{align*}
-vsamc
Video Solution by Richard Rusczyk
https://www.youtube.com/watch?v=OdSTfCDOh5A
- AMBRIGGS
See Also
| 2020 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 21 |
Followed by Problem 23 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.