Difference between revisions of "1978 AHSME Problems/Problem 23"

(Solution)
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
 
<math>\textbf{(A) }1\qquad \textbf{(B) }\frac{\sqrt{2}}{2}\qquad \textbf{(C) }\frac{\sqrt{3}}{2}\qquad \textbf{(D) }4-2\sqrt{3}\qquad  \textbf{(E) }\frac{1}{2}+\frac{\sqrt{3}}{4}</math>
 
<math>\textbf{(A) }1\qquad \textbf{(B) }\frac{\sqrt{2}}{2}\qquad \textbf{(C) }\frac{\sqrt{3}}{2}\qquad \textbf{(D) }4-2\sqrt{3}\qquad  \textbf{(E) }\frac{1}{2}+\frac{\sqrt{3}}{4}</math>
  
==Solution==
+
== Solution ==
Place square ABCD on the coordinate plane with A at the origin.  
+
 
In polar form, line BD is rsinθ=sqrt(1+sqrt(3))-rcosθ and line AF is θ=(pi)/3
+
Place square <math>ABCD</math> on the coordinate plane with <math>A</math> at the origin.  
This means that the length of the intersection (r) is
+
 
r*(sqrt3)/2=sqrt(1+sqrt(3))-r/2
+
In polar form, line <math>BD</math> is <math>r\sin(\theta) = \sqrt{1 + \sqrt{3}} - r \cos(\theta)</math> and line <math>AF</math> is <math>\theta = \frac{\pi}{3}</math>.
Solving for r you get: r=2/sqrt(1+sqrt(3))
+
 
Using the firmly for area of a triangle (A=ab(Sinθ)/2) you get A=2/sqrt(1+sqrt(3))*sqrt(1+sqrt(3))*sin(pi/3)/3=(sqrt3)/2
+
This means that the length from the origin to the intersection (<math>r</math>) is <math>r\frac{\sqrt{3}}{2} = \sqrt{1 + \sqrt{3}} - \frac{r}{2}</math>
Getting C as the answer
+
 
 +
Solving for <math>r</math>, you get: <math>r = \frac{2}{\sqrt{1 + \sqrt{3}}}</math>
 +
 
 +
Using the formula for area of a triangle (<math>A = \frac{ab\sin{C}}{2}</math>), you get <math>A = \frac{(\frac{2}{\sqrt{1 + \sqrt{3}}})(\sqrt{1 + \sqrt{3}}) \sin(\frac{\pi}{3})}{2} = \frac{\sqrt{3}}{2}</math>
 +
 
 +
Getting <math>\textbf{C}</math> as the answer

Latest revision as of 12:33, 17 August 2025

Problem

Vertex $E$ of equilateral $\triangle ABE$ is in the interior of square $ABCD$, and $F$ is the point of intersection of diagonal $BD$ and line segment $AE$. If length $AB$ is $\sqrt{1+\sqrt{3}}$ then the area of $\triangle ABF$ is

$\textbf{(A) }1\qquad \textbf{(B) }\frac{\sqrt{2}}{2}\qquad \textbf{(C) }\frac{\sqrt{3}}{2}\qquad \textbf{(D) }4-2\sqrt{3}\qquad  \textbf{(E) }\frac{1}{2}+\frac{\sqrt{3}}{4}$

Solution

Place square $ABCD$ on the coordinate plane with $A$ at the origin.

In polar form, line $BD$ is $r\sin(\theta) = \sqrt{1 + \sqrt{3}} - r \cos(\theta)$ and line $AF$ is $\theta = \frac{\pi}{3}$.

This means that the length from the origin to the intersection ($r$) is $r\frac{\sqrt{3}}{2} = \sqrt{1 + \sqrt{3}} - \frac{r}{2}$

Solving for $r$, you get: $r = \frac{2}{\sqrt{1 + \sqrt{3}}}$

Using the formula for area of a triangle ($A = \frac{ab\sin{C}}{2}$), you get $A = \frac{(\frac{2}{\sqrt{1 + \sqrt{3}}})(\sqrt{1 + \sqrt{3}}) \sin(\frac{\pi}{3})}{2} = \frac{\sqrt{3}}{2}$

Getting $\textbf{C}$ as the answer