Difference between revisions of "2022 SSMO Speed Round Problems/Problem 4"
(Created page with "==Problem== Let <math>F_1 = F_2 = 1</math> and <math>F_n = F_{n-1} + F_{n-2}</math> for all <math>n\geq 2</math> be the Fibonacci numbers. If distinct positive integers <math>...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | ||
+ | Consider a quadrilateral <math>ABCD</math> with area <math>120</math> and satisfying <math>AB+CD=AD+BC=24</math>. There exists a point <math>P</math> in 3D space such that the distances from <math>P</math> to <math>AB</math>, <math>BC</math>, <math>CD</math>, and <math>DA</math> are all equal to <math>13</math>. Find the volume of <math>PABCD</math>. | ||
==Solution== | ==Solution== | ||
+ | Let <math>r</math> be the inradius of <math>ABCD</math>. Note that <cmath>\frac{1}{2}r(AB+BC+CD+DA)=[ABCD]\implies r = \frac{2\cdot120}{24+24} = 5.</cmath> We have <cmath>h^2+5^2 = 13^2\implies h = 12,</cmath> meaning the volume of <math>PABCD</math> is <cmath>\frac{1}{3}h[ABCD] = \frac{1}{3}(12)(120) = \boxed{480}.</cmath> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ~pinkpig | |
− | |||
− | |||
− | |||
− |
Latest revision as of 17:37, 13 September 2025
Problem
Consider a quadrilateral with area
and satisfying
. There exists a point
in 3D space such that the distances from
to
,
,
, and
are all equal to
. Find the volume of
.
Solution
Let be the inradius of
. Note that
We have
meaning the volume of
is
~pinkpig