Difference between revisions of "1988 OIM Problems/Problem 4"

(solution)
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
  
 
Prove that <math>\frac{S}{a^2+b^2+c^2}</math> is rational.
 
Prove that <math>\frac{S}{a^2+b^2+c^2}</math> is rational.
 +
 +
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Drop a perpendicular from <math>A</math> onto <math>BC</math>, and let the foot be <math>M_a</math>. Let <math>p_a=BM_a</math> and <math>q_a=CM_a</math> (so <math>p_a+q_a=a</math>), and define similar values for <math>B</math> and <math>C</math>. Furthermore, let <math>S_a</math> represent the contributions of the distances from <math>A</math> to the opposite side and <math>S_b</math> and <math>S_c</math> similarly; thus <math>S=S_a+S_b+S_c</math>.
 +
 
 +
Notice that each segment on <math>BC</math> has length <math>\frac{a}{n}</math>; let <math>h_a</math> be the length of the altitude from <math>A</math> (so <math>h_a^2+p_a^2=b^2</math> and <math>h_a^2+q_a^2=c^2</math> by the [[Pythagorean Theorem]]). Then, by multiple uses of the Pythagorean Theorem:
 +
\begin{align*}
 +
S_a&=\left(h_a^2+\left(p_a-\frac{a}{n}\right)^2\right)+ \left(h_a^2+\left(p_a-\frac{2a}{n}\right)^2\right)+\cdots+ \left(h_a^2+\left(p_a-\frac{a(n-1)}{n}\right)^2\right)\\
 +
&=(n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\\
 +
\end{align*}
 +
But notice that, due to symmetry, we can substitute <math>q_a</math> in place of <math>p_a</math> and yield the same result. Therefore,
 +
\begin{align*}
 +
S_a&=\frac{1}{2}S_a+\frac{1}{2}S_a\\
 +
&=\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\right)+\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(q_a-\frac{ia}{n}\right)^2\right)\\
 +
&=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\left(p_a-\frac{ia}{n}\right)^2+\left(q_a-\frac{ia}{n}\right)^2\right)\\
 +
&=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(p_a^2-\frac{2iap_a}{n}+\frac{i^2a^2}{n^2}+q_a^2-\frac{2iaq_a}{n}+\frac{i^2a^2}{n^2}\right)\\
 +
&=\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)p_a^2+\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)q_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia(p_a+q_a)}{n}\right)\\
 +
&=\frac{1}{2}(n-1)(b^2+c^2)+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia^2}{n}\right)\\
 +
&=\frac{1}{2}(n-1)(b^2+c^2)+a^2\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\
 +
\end{align*}
 +
We can similarly find <math>S_b</math> and <math>S_c</math>. Then,
 +
\begin{align*}
 +
S&=S_a+S_b+S_c\\
 +
&=(n-1)(a^2+b^2+c^2)+(a^2+b^2+c^2)\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\
 +
\end{align*}
 +
Thus,
 +
<cmath>\frac{S}{a^2+b^2+c^2}=n-1+\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)</cmath>
 +
which is rational.
 +
 
 +
~eevee9406
 +
 
 +
== See also ==
 +
https://www.oma.org.ar/enunciados/ibe3.htm

Latest revision as of 01:53, 26 March 2025

Problem

Let $ABC$ be a triangle which sides are $a$, $b$, $c$. We divide each side of the triangle in $n$ equal segments. Let $S$ be the sum of the squares of the distances from each vertex to each of the points dividing the opposite side different from the vertices.

Prove that $\frac{S}{a^2+b^2+c^2}$ is rational.

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

Drop a perpendicular from $A$ onto $BC$, and let the foot be $M_a$. Let $p_a=BM_a$ and $q_a=CM_a$ (so $p_a+q_a=a$), and define similar values for $B$ and $C$. Furthermore, let $S_a$ represent the contributions of the distances from $A$ to the opposite side and $S_b$ and $S_c$ similarly; thus $S=S_a+S_b+S_c$.

Notice that each segment on $BC$ has length $\frac{a}{n}$; let $h_a$ be the length of the altitude from $A$ (so $h_a^2+p_a^2=b^2$ and $h_a^2+q_a^2=c^2$ by the Pythagorean Theorem). Then, by multiple uses of the Pythagorean Theorem: \begin{align*} S_a&=\left(h_a^2+\left(p_a-\frac{a}{n}\right)^2\right)+ \left(h_a^2+\left(p_a-\frac{2a}{n}\right)^2\right)+\cdots+ \left(h_a^2+\left(p_a-\frac{a(n-1)}{n}\right)^2\right)\\ &=(n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\\ \end{align*} But notice that, due to symmetry, we can substitute $q_a$ in place of $p_a$ and yield the same result. Therefore, \begin{align*} S_a&=\frac{1}{2}S_a+\frac{1}{2}S_a\\ &=\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\right)+\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(q_a-\frac{ia}{n}\right)^2\right)\\ &=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\left(p_a-\frac{ia}{n}\right)^2+\left(q_a-\frac{ia}{n}\right)^2\right)\\ &=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(p_a^2-\frac{2iap_a}{n}+\frac{i^2a^2}{n^2}+q_a^2-\frac{2iaq_a}{n}+\frac{i^2a^2}{n^2}\right)\\ &=\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)p_a^2+\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)q_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia(p_a+q_a)}{n}\right)\\ &=\frac{1}{2}(n-1)(b^2+c^2)+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia^2}{n}\right)\\ &=\frac{1}{2}(n-1)(b^2+c^2)+a^2\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\ \end{align*} We can similarly find $S_b$ and $S_c$. Then, \begin{align*} S&=S_a+S_b+S_c\\ &=(n-1)(a^2+b^2+c^2)+(a^2+b^2+c^2)\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\ \end{align*} Thus, \[\frac{S}{a^2+b^2+c^2}=n-1+\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\] which is rational.

~eevee9406

See also

https://www.oma.org.ar/enunciados/ibe3.htm