Difference between revisions of "2022 SSMO Team Round Problems/Problem 9"

(Created page with "==Problem== Given real numbers <math>a,b,x,y</math> such that <align*> a^2+b^2&=1,\\ x^2+y^2&=1,\\ abxy-\frac{1}{8}&=b^2y^2, </align*> find the sum of all distinct values of <...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Given real numbers <math>a,b,x,y</math> such that <align*> a^2+b^2&=1,\\ x^2+y^2&=1,\\ abxy-\frac{1}{8}&=b^2y^2, </align*> find the sum of all distinct values of <math>(a+b+x+y)^2</math>.
+
Given real numbers <math>a,b,x,y</math> such that  
 +
\begin{align*}
 +
a^2+b^2&=1,\\  
 +
x^2+y^2&=1,\text{and}\\
 +
abxy-\frac{1}{8}&=b^2y^2,
 +
\end{align*}
 +
find the sum of all distinct values of <math>(a+b+x+y)^2</math>.
  
 
==Solution==
 
==Solution==

Latest revision as of 19:16, 2 May 2025

Problem

Given real numbers $a,b,x,y$ such that \begin{align*} a^2+b^2&=1,\\ x^2+y^2&=1,\text{and}\\ abxy-\frac{1}{8}&=b^2y^2, \end{align*} find the sum of all distinct values of $(a+b+x+y)^2$.

Solution