Difference between revisions of "2023 SSMO Relay Round 1 Problems"
(Created page with "==Problem 1== Compute the remainder when <math>2022^{2021^{2020^{\dots}}}</math> is divided by <math>2023</math>. Solution ==P...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
[[2023 SSMO Relay Round 1 Problems/Problem 1|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 1|Solution]] | ||
+ | |||
==Problem 2== | ==Problem 2== | ||
− | Let <math>T=</math> | + | Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = N</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math>. Find <cmath>\sum_{i=0}^\infty a_i.</cmath> |
[[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]] | ||
+ | |||
==Problem 3== | ==Problem 3== | ||
− | Let <math>T=</math> | + | Let <math>T=TNYWR</math>. Find the number of solutions to the equation |
− | + | <cmath>\sec^{N} (Nx) - \tan^{N}(Nx) = 1</cmath> | |
− | |||
− | |||
such <math>0 \le x \le \pi</math> | such <math>0 \le x \le \pi</math> | ||
+ | |||
[[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]] |