Difference between revisions of "2019 AIME I Problems/Problem 13"
R00tsofunity (talk | contribs) |
Jingxuanbo (talk | contribs) m (→Solution 6) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Problem== | + | == Problem == |
+ | |||
Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
Line 55: | Line 56: | ||
Let <math>G</math> be the intersection of segment <math>\overline{AE}</math> and <math>\overline{CF}</math>. Using Power of a Point with respect to <math>G</math> within <math>\omega_1</math>, we find that <math>AG \cdot GD = CG \cdot GF</math>. We can also apply Power of a Point with respect to <math>G</math> within <math>\omega_2</math> to find that <math>CG \cdot GF = BG \cdot GE</math>. Therefore, <math>AG \cdot GD = BG \cdot GE</math>. | Let <math>G</math> be the intersection of segment <math>\overline{AE}</math> and <math>\overline{CF}</math>. Using Power of a Point with respect to <math>G</math> within <math>\omega_1</math>, we find that <math>AG \cdot GD = CG \cdot GF</math>. We can also apply Power of a Point with respect to <math>G</math> within <math>\omega_2</math> to find that <math>CG \cdot GF = BG \cdot GE</math>. Therefore, <math>AG \cdot GD = BG \cdot GE</math>. | ||
− | < | + | <cmath>AG \cdot GD = BG \cdot GE</cmath> |
− | + | <cmath>(AB + BG) \cdot GD = BG \cdot (GD + DE)</cmath> | |
− | < | + | <cmath>AB \cdot GD + BG \cdot GD = BG \cdot GD + BG \cdot DE</cmath> |
− | + | <cmath>AB \cdot GD = BG \cdot DE</cmath> | |
− | < | + | <cmath>4 \cdot GD = BG \cdot 4\sqrt{2}</cmath> |
− | + | <cmath>GD = BG \cdot \sqrt{2}</cmath> | |
− | < | ||
− | |||
− | < | ||
− | |||
− | < | ||
Note that <math>\triangle GAC</math> is similar to <math>\triangle GFD</math>. <math>GF = \frac{BG + 4}{3}</math>. Also note that <math>\triangle GBC</math> is similar to <math>\triangle GFE</math>, which gives us <math>GF = \frac{7 \cdot BG}{5}</math>. Solving this system of linear equations, we get <math>BG = \frac{5}{4}</math>. Now, we can solve for <math>BE</math>, which is equal to <math>BG(\sqrt{2} + 1) + 4\sqrt{2}</math>. This simplifies to <math>\frac{5 + 21\sqrt{2}}{4}</math>, which means our answer is <math>\boxed{032}</math>. | Note that <math>\triangle GAC</math> is similar to <math>\triangle GFD</math>. <math>GF = \frac{BG + 4}{3}</math>. Also note that <math>\triangle GBC</math> is similar to <math>\triangle GFE</math>, which gives us <math>GF = \frac{7 \cdot BG}{5}</math>. Solving this system of linear equations, we get <math>BG = \frac{5}{4}</math>. Now, we can solve for <math>BE</math>, which is equal to <math>BG(\sqrt{2} + 1) + 4\sqrt{2}</math>. This simplifies to <math>\frac{5 + 21\sqrt{2}}{4}</math>, which means our answer is <math>\boxed{032}</math>. | ||
Line 98: | Line 94: | ||
==Solution 6== | ==Solution 6== | ||
− | |||
− | |||
First, let <math>AE</math> and <math>CF</math> intersect at <math>X</math>. Our motivation here is to introduce cyclic quadrilaterals and find useful relationships in terms of angles. Observe that | First, let <math>AE</math> and <math>CF</math> intersect at <math>X</math>. Our motivation here is to introduce cyclic quadrilaterals and find useful relationships in terms of angles. Observe that | ||
Line 111: | Line 105: | ||
So <math>DE = 4 \sqrt{2}</math>, now by our cyclic quadrilaterals again, we are motivated by the multiple appearances of similar triangles throughout the figure. We want some that are related to <math>BX</math> and <math>XD</math>, which are crucial lengths in the problem. Suppose <math>BX = r, XD = s</math> for simplicity. We have: | So <math>DE = 4 \sqrt{2}</math>, now by our cyclic quadrilaterals again, we are motivated by the multiple appearances of similar triangles throughout the figure. We want some that are related to <math>BX</math> and <math>XD</math>, which are crucial lengths in the problem. Suppose <math>BX = r, XD = s</math> for simplicity. We have: | ||
− | < | + | <cmath>\triangle AXC \sim \triangle FXD</cmath> |
− | < | + | and |
+ | <cmath>\triangle BXC \sim \triangle FXE</cmath> | ||
So | So | ||
Line 128: | Line 123: | ||
~r00tsOfUnity | ~r00tsOfUnity | ||
− | ==See Also== | + | == See Also == |
+ | |||
{{AIME box|year=2019|n=I|num-b=12|num-a=14}} | {{AIME box|year=2019|n=I|num-b=12|num-a=14}} | ||
− | + | {{MAA Notice}} | |
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
− |
Latest revision as of 23:30, 24 June 2025
Contents
Problem
Triangle has side lengths
,
, and
. Points
and
are on ray
with
. The point
is a point of intersection of the circumcircles of
and
satisfying
and
. Then
can be expressed as
, where
,
,
, and
are positive integers such that
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1
Notice that By the Law of Cosines,
Then,
Let
,
, and
. Then,
However, since
,
, but since
,
and the requested sum is
.
(Solution by TheUltimate123)
Solution 2
Define to be the circumcircle of
and
to be the circumcircle of
.
Because of exterior angles,
But because
is cyclic. In addition,
because
is cyclic. Therefore,
. But
, so
. Using Law of Cosines on
, we can figure out that
. Since
,
. We are given that
and
, so we can use Law of Cosines on
to find that
.
Let be the intersection of segment
and
. Using Power of a Point with respect to
within
, we find that
. We can also apply Power of a Point with respect to
within
to find that
. Therefore,
.
Note that is similar to
.
. Also note that
is similar to
, which gives us
. Solving this system of linear equations, we get
. Now, we can solve for
, which is equal to
. This simplifies to
, which means our answer is
.
Solution 3
Construct and let
. Let
. Using
,
Using
, it can be found that
This also means that
. It suffices to find
. It is easy to see the following:
Using reverse Law of Cosines on
,
. Using Law of Cosines on
gives
, so
.
-franchester
Solution 4 (No <C = <DFE, no LoC)
Let . Let
and
; from
we have
and
. From
we have
giving
. So
and
. These similar triangles also gives us
so
. Now, Stewart's Theorem on
and cevian
tells us that
so
. Then
so the answer is
as desired. (Solution by Trumpeter, but not added to the Wiki by Trumpeter)
Solution 5
Connect meeting
at
. We can observe that
Getting that
. We can also observe that
, getting that
Assume that , since
, we can get that
, getting that
Using Power of Point, we can get that Assume that
, getting that
Now applying Law of Cosine on two triangles, separately, we can get two equations
Since , we can use
to eliminate the
term
Then we can get that , getting
, so the desired answer is
, which leads to the answer
~bluesoul
Solution 6
First, let and
intersect at
. Our motivation here is to introduce cyclic quadrilaterals and find useful relationships in terms of angles. Observe that
By the so-called "Reverse Law of Cosines" on
we have
Applying on
gives
So
, now by our cyclic quadrilaterals again, we are motivated by the multiple appearances of similar triangles throughout the figure. We want some that are related to
and
, which are crucial lengths in the problem. Suppose
for simplicity. We have:
and
So
So
. The requested sum is
.
~CoolJupiter
Video Solution by MOP 2024
https://youtube.com/watch?v=B7rFw05AYQ0
~r00tsOfUnity
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.