Difference between revisions of "2022 AMC 8 Problems/Problem 3"
(→Solution 2) |
(→Categorized problem) |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 0 \qquad \textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4</math> | <math>\textbf{(A) } 0 \qquad \textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4</math> | ||
− | 4 ways | + | ==Solution 1== |
+ | |||
+ | The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | ||
+ | It is clear that <math>10\leq c\leq50,</math> so we apply casework to <math>c:</math> | ||
+ | |||
+ | * If <math>c=10,</math> then <math>(a,b,c)=(2,5,10).</math> | ||
+ | |||
+ | * If <math>c=20,</math> then <math>(a,b,c)=(1,5,20).</math> | ||
+ | |||
+ | * If <math>c=25,</math> then <math>(a,b,c)=(1,4,25).</math> | ||
+ | |||
+ | * If <math>c=50,</math> then <math>(a,b,c)=(1,2,50).</math> | ||
+ | |||
+ | Together, the numbers <math>a,b,</math> and <math>c</math> can be chosen in <math>\boxed{\textbf{(E) } 4}</math> ways. | ||
+ | |||
+ | ~MRENTHUSIASM | ||
− | ==Solution | + | ==Solution 2== |
The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | ||
− | We | + | We apply casework to <math>a</math>: |
If <math>a=1</math>, then there are <math>3</math> cases: | If <math>a=1</math>, then there are <math>3</math> cases: | ||
Line 27: | Line 42: | ||
~MathFun1000 | ~MathFun1000 | ||
+ | |||
+ | ==Video Solution (A Clever Explanation You’ll Get Instantly)== | ||
+ | https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=135 | ||
+ | ~hsnacademy | ||
==Video Solution 1 by Math-X (First understand the problem!!!)== | ==Video Solution 1 by Math-X (First understand the problem!!!)== | ||
Line 57: | Line 76: | ||
~harungurcan | ~harungurcan | ||
+ | |||
+ | ==Video Solution 7 by Dr. David== | ||
+ | |||
+ | https://youtu.be/EbLGPhGVz6E | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2022|num-b=2|num-a=4}} | {{AMC8 box|year=2022|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | |||
+ | [[Category:Introductory Number Theory Problems]] |
Latest revision as of 17:48, 4 June 2025
Contents
- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Video Solution (A Clever Explanation You’ll Get Instantly)
- 5 Video Solution 1 by Math-X (First understand the problem!!!)
- 6 Video Solution 2 (CREATIVE THINKING!!!)
- 7 Video Solution 3
- 8 Video Solution 4
- 9 Video Solution 5
- 10 Video Solution 6
- 11 Video Solution 7 by Dr. David
- 12 See Also
Problem
When three positive integers ,
, and
are multiplied together, their product is
. Suppose
. In how many ways can the numbers be chosen?
Solution 1
The positive divisors of are
It is clear that
so we apply casework to
- If
then
- If
then
- If
then
- If
then
Together, the numbers and
can be chosen in
ways.
~MRENTHUSIASM
Solution 2
The positive divisors of are
We apply casework to
:
If , then there are
cases:
If , then there is only
case:
In total, there are ways to choose distinct positive integer values of
.
~MathFun1000
Video Solution (A Clever Explanation You’ll Get Instantly)
https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=135 ~hsnacademy
Video Solution 1 by Math-X (First understand the problem!!!)
https://youtu.be/oUEa7AjMF2A?si=tkBYOey2NioTPPPq&t=221
~Math-X
Video Solution 2 (CREATIVE THINKING!!!)
~Education, the Study of Everything
Video Solution 3
https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=142
~Interstigation
Video Solution 4
~savannahsolver
Video Solution 5
https://youtu.be/Q0R6dnIO95Y?t=98
~STEMbreezy
Video Solution 6
https://www.youtube.com/watch?v=KkZ95iNlFyc
~harungurcan
Video Solution 7 by Dr. David
See Also
2022 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.