Difference between revisions of "2024 AMC 8 Problems/Problem 1"

m (Solution 2)
 
(118 intermediate revisions by 49 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
What is the ones digit of<cmath>222,222-22,222-2,222-222-22-2?</cmath><math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math>
+
What is the unit digit of: <cmath>222{,}222-22{,}222-2{,}222-222-22-2?</cmath>
 +
<math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 8\qquad\textbf{(E) } 10</math>
  
 
==Solution 1==
 
==Solution 1==
 +
We can rewrite the expression as <math>222,222-(22,222+2,222+222+22+2)</math>. We note that the units digit of <math>22,222+2,222+222+22+2</math> is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5\cdot2=10</math>, which has a units digit of <math>0</math>. Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>, and so the units digit of this expression is <math>\boxed{\textbf{(B) } 2}</math>.
  
We can rewrite the expression as <cmath>222,222-(22,222+2,222+222+22+2).</cmath>
+
==Solution 2==
 
+
<cmath>222,222-22,222 = 200,000</cmath>
We note that the units digit of the addition is <math>0</math> because all the units digits of the five numbers are <math>2</math> and <math>5*2=10</math>, which has a units digit of <math>0</math>.
+
<cmath>200,000 - 2,222 = 197778</cmath>
 
+
<cmath>197778 - 222 = 197556</cmath>
Now, we have something with a units digit of <math>0</math> subtracted from <math>222,222</math>. The units digit of this expression is obviously <math>2</math>, and we get <math>\boxed{B}</math> as our answer.
+
<cmath>197556 - 22 = 197534</cmath>
 
+
<cmath>197534 - 2 = 197532</cmath>
i am smart
+
So our answer is <math>\boxed{\textbf{(B) } 2}</math>. (Note that brute forcing takes lots of time and the AMC8 is a timed test)
 
 
~ Dreamer1297
 
 
 
==Solution 2(Tedious)==
 
 
 
Using Arun Thereom, we deduce that the answer is (Z)
 
 
 
No Solution<math></math>\boxed{\textbf{(Z)} \hspace{1 mm} 2}<math>
 
 
 
Note that this solution is not recommended to use during the actual exam. A lot of students this year had implemented this solution and lost a significant amount of time.
 
</math>\newline<math>
 
~ nikhil
 
~ CXP
 
~ Nivaar
 
  
 
==Solution 3==
 
==Solution 3==
 
+
We only care about the units digits. Thus, <math>2-2</math> ends in <math>0</math>, <math>0-2</math> after regrouping(10-2) ends in <math>8</math>, <math>8-2</math> ends in <math>6</math>, <math>6-2</math> ends in <math>4</math>, and <math>4-2</math> ends in <math>\boxed{\textbf{(B) } 2}</math>.
We only care about the unit's digits.
 
 
 
Thus, </math>2-2<math> ends in </math>0<math>, </math>0-2<math> ends in </math>8<math>, </math>8-2<math> ends in </math>6<math>, </math>6-2<math> ends in </math>4<math>, and </math>4-2<math> ends in </math>\boxed{\textbf{(A) } -098765432345q67w565374865368769chvdfhb}<math>.
 
 
 
~iasdjfpawregh
 
  
 
==Solution 4==
 
==Solution 4==
 +
We just take the units digit of each and subtract, adding an extra ten to the first number so we don't get a negative number:
 +
<cmath>(12-2)-(2+2+2+2)=10-8=\boxed{\textbf{(B) } 2}</cmath>
  
Let </math>S<math> be equal to the expression at hand. We reduce each term modulo </math>10<math> to find the units digit of each term in the expression, and thus the units digit of the entire thing:
+
== Solution 5 ==
 +
<cmath>222{,}222-22{,}222-2{,}222-222-22-2\equiv2-2-2-2-2\equiv-8\equiv\boxed{\textbf{(B) } 2}\pmod{10}</cmath>
  
<cmath>S\equiv 2 - 2 - 2 - 2- 2- 2 \equiv -8 \equiv -8 + 10\equiv \boxed{\textbf{(B) } 2} \pmod{10}.</cmath>
 
  
-Benedict T (countmath1)
+
== Solution 6==
  
 +
We can ignore the other digits and just do <math>22-2-2-2-2-2</math>. Because you are subtracting five <math>2s</math> and <math>2\cdot5 = 10</math>, you subtract <math>10</math> from <math>22</math>. This gives us 12, so the last digit is <math>\boxed{\textbf{(B) } 2}</math>.
  
 +
== Video Solution 1 (Detailed Explanation) 🚀⚡📊 ==
 +
Youtube Link ⬇️
  
==Solution 5==
+
https://youtu.be/jqsbMWhTYRg
We just take the units digit of each and subtract, or you can do it this way by adding an extra ten to the first number (so we don't get a negative number):
 
<cmath>12-2-(2+2+2+2)=10-8=2</cmath>
 
Thus, we get the answer </math>\boxed{(B)}<math>
 
  
- U-King
+
~ ChillGuyDoesMath :)
  
==Solution 6(fast)==
+
== Video by MathTalks_Now ==
uwu  </math>\boxed{(uwu)}<math>
 
  
- uwu gamer girl(ꈍᴗꈍ)
+
https://www.youtube.com/watch?v=crn37TRMLv4
  
==Solution 7==
+
-rc1219
2-2=0. Therefore, ones digit is the 10th avacado  </math>\boxed{(F)}$
 
  
- iamcalifornia'sresidentidiot
+
==Video Solution by Central Valley Math Circle (Goes through full thought process)==
 +
https://youtu.be/-XcShDyuZIo
  
==Video Solution 1 (easy to digest) by Power Solve==
+
==Video Solution 2 (MATH-X)==
https://www.youtube.com/watch?v=dQw4w9WgXcQ
+
https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130
  
==Easy to understand solution==
+
==Video Solution 3 (A Clever Explanation You’ll Get Instantly)==
https://youtu.be/BaE00H2SHQM?si=qCXgxSk5HXjH3L1x
+
https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53
  
~Math-X
+
==Video Solution  4 (Quick and Easy)==
 +
https://youtu.be/Ol1seWX0xHY
  
==Video Solution by NiuniuMaths (Easy to understand!)==
+
==Video Solution 5 Interstigation==
https://www.youtube.com/watch?v=dQw4w9WgXcQ
+
https://youtu.be/ktzijuZtDas&t=36
  
~Rick Atsley
+
==Video Solution 6 Daily Dose of Math==
 +
https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR
  
==Video Solution 2 by uwu==
+
==Video Solution 7 Dr. David==
https://www.youtube.com/watch?v=dQw4w9WgXcQ
+
https://youtu.be/RzPadkHd3Yc
  
== Video Solution by CosineMethod [🔥Fast and Easy🔥]==
+
==Video Solution 8 WhyMath==
 
+
https://youtu.be/i4mcj3jRTxM
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
 
 
== cool solution must see ==
 
 
 
https://www.youtube.com/watch?v=dQw4w9WgXcQ
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{AMC8 box|year=2024|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
 +
[[Category:Introductory Number Theory Problems]]

Latest revision as of 22:50, 4 August 2025

Problem

What is the unit digit of: \[222{,}222-22{,}222-2{,}222-222-22-2?\] $\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 8\qquad\textbf{(E) } 10$

Solution 1

We can rewrite the expression as $222,222-(22,222+2,222+222+22+2)$. We note that the units digit of $22,222+2,222+222+22+2$ is $0$ because all the units digits of the five numbers are $2$ and $5\cdot2=10$, which has a units digit of $0$. Now, we have something with a units digit of $0$ subtracted from $222,222$, and so the units digit of this expression is $\boxed{\textbf{(B) } 2}$.

Solution 2

\[222,222-22,222 = 200,000\] \[200,000 - 2,222 = 197778\] \[197778 - 222 = 197556\] \[197556 - 22 = 197534\] \[197534 - 2 = 197532\] So our answer is $\boxed{\textbf{(B) } 2}$. (Note that brute forcing takes lots of time and the AMC8 is a timed test)

Solution 3

We only care about the units digits. Thus, $2-2$ ends in $0$, $0-2$ after regrouping(10-2) ends in $8$, $8-2$ ends in $6$, $6-2$ ends in $4$, and $4-2$ ends in $\boxed{\textbf{(B) } 2}$.

Solution 4

We just take the units digit of each and subtract, adding an extra ten to the first number so we don't get a negative number: \[(12-2)-(2+2+2+2)=10-8=\boxed{\textbf{(B) } 2}\]

Solution 5

\[222{,}222-22{,}222-2{,}222-222-22-2\equiv2-2-2-2-2\equiv-8\equiv\boxed{\textbf{(B) } 2}\pmod{10}\]


Solution 6

We can ignore the other digits and just do $22-2-2-2-2-2$. Because you are subtracting five $2s$ and $2\cdot5 = 10$, you subtract $10$ from $22$. This gives us 12, so the last digit is $\boxed{\textbf{(B) } 2}$.

Video Solution 1 (Detailed Explanation) 🚀⚡📊

Youtube Link ⬇️

https://youtu.be/jqsbMWhTYRg

~ ChillGuyDoesMath :)

Video by MathTalks_Now

https://www.youtube.com/watch?v=crn37TRMLv4

-rc1219

Video Solution by Central Valley Math Circle (Goes through full thought process)

https://youtu.be/-XcShDyuZIo

Video Solution 2 (MATH-X)

https://youtu.be/BaE00H2SHQM?si=O0O0g7qq9AbhQN9I&t=130

Video Solution 3 (A Clever Explanation You’ll Get Instantly)

https://youtu.be/5ZIFnqymdDQ?si=IbHepN2ytt7N23pl&t=53

Video Solution 4 (Quick and Easy)

https://youtu.be/Ol1seWX0xHY

Video Solution 5 Interstigation

https://youtu.be/ktzijuZtDas&t=36

Video Solution 6 Daily Dose of Math

https://youtu.be/bSPWqeNO11M?si=HIzlxPjMfvGM5lxR

Video Solution 7 Dr. David

https://youtu.be/RzPadkHd3Yc

Video Solution 8 WhyMath

https://youtu.be/i4mcj3jRTxM

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png