Difference between revisions of "2024 AIME I Problems/Problem 13"

(The same solution is covered in solution 2, and this solution does not prove nor explain its intermediate steps.)
(orders)
 
(25 intermediate revisions by 13 users not shown)
Line 2: Line 2:
 
Let <math>p</math> be the least prime number for which there exists a positive integer <math>n</math> such that <math>n^{4}+1</math> is divisible by <math>p^{2}</math>. Find the least positive integer <math>m</math> such that <math>m^{4}+1</math> is divisible by <math>p^{2}</math>.
 
Let <math>p</math> be the least prime number for which there exists a positive integer <math>n</math> such that <math>n^{4}+1</math> is divisible by <math>p^{2}</math>. Find the least positive integer <math>m</math> such that <math>m^{4}+1</math> is divisible by <math>p^{2}</math>.
  
==Solution 2==
+
==Solution 1==
  
 
If \(p=2\), then \(4\mid n^4+1\) for some integer \(n\). But \(\left(n^2\right)^2\equiv0\) or \(1\pmod4\), so it is impossible. Thus \(p\) is an odd prime.
 
If \(p=2\), then \(4\mid n^4+1\) for some integer \(n\). But \(\left(n^2\right)^2\equiv0\) or \(1\pmod4\), so it is impossible. Thus \(p\) is an odd prime.
  
For integer \(n\) such that \(p^2\mid n^4+1\), we have \(p\mid n^4+1\), hence \(p\nmid n^4-1\), but \(p\mid n^8-1\). By Fermat's theorem, \(p\mid n^{p-1}-1\), so
+
There are two ways to do the first part:
 +
 
 +
<b>First Method using FLT.</b> For integer \(n\) such that \(p^2\mid n^4+1\), we have \(p\mid n^4+1\), hence \(p\nmid n^4-1\), but \(p\mid n^8-1\). By [[Fermat's Little Theorem]], \(p\mid n^{p-1}-1\), so
 
\begin{equation*}
 
\begin{equation*}
 
p\mid\gcd\left(n^{p-1}-1,n^8-1\right)=n^{\gcd(p-1,8)}-1.
 
p\mid\gcd\left(n^{p-1}-1,n^8-1\right)=n^{\gcd(p-1,8)}-1.
 
\end{equation*}
 
\end{equation*}
 
Here, \(\gcd(p-1,8)\) mustn't be divide into \(4\) or otherwise \(p\mid n^{\gcd(p-1,8)}-1\mid n^4-1\), which contradicts. So \(\gcd(p-1,8)=8\), and so \(8\mid p-1\). The smallest such prime is clearly \(p=17=2\times8+1\).
 
Here, \(\gcd(p-1,8)\) mustn't be divide into \(4\) or otherwise \(p\mid n^{\gcd(p-1,8)}-1\mid n^4-1\), which contradicts. So \(\gcd(p-1,8)=8\), and so \(8\mid p-1\). The smallest such prime is clearly \(p=17=2\times8+1\).
 +
 +
 +
<b>Second Method using orders.</b> Notice that the order modulo <math>p^2</math> of <math>n^4</math> must be <math>8</math>, so <math>8\mid\varphi(p^2)=p(p-1)</math>. Hence <math>8\mid p-1</math>, so <math>p\equiv 1\pmod{8}</math>. The smallest such prime is <math>p=17</math>. ~eevee9406
 +
 +
 
So we have to find the smallest positive integer \(m\) such that \(17\mid m^4+1\). We first find the remainder of \(m\) divided by \(17\) by doing
 
So we have to find the smallest positive integer \(m\) such that \(17\mid m^4+1\). We first find the remainder of \(m\) divided by \(17\) by doing
 
\begin{array}{|c|cccccccccccccccc|}
 
\begin{array}{|c|cccccccccccccccc|}
 
\hline
 
\hline
 
\vphantom{\tfrac11}x\bmod{17}&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16\\\hline
 
\vphantom{\tfrac11}x\bmod{17}&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16\\\hline
\vphantom{\dfrac11}\left(x^4\right)^2+1\bmod{17}&2&0&14&2&14&5&5&0&0&5&5&14&2&14&0&2\\\hline
+
\vphantom{\dfrac11}\left(x^4\right)+1\bmod{17}&2&0&14&2&14&5&5&0&0&5&5&14&2&14&0&2\\\hline
 
\end{array}
 
\end{array}
 
So \(m\equiv\pm2\), \(\pm8\pmod{17}\). If \(m\equiv2\pmod{17}\), let \(m=17k+2\), by the binomial theorem,
 
So \(m\equiv\pm2\), \(\pm8\pmod{17}\). If \(m\equiv2\pmod{17}\), let \(m=17k+2\), by the binomial theorem,
Line 49: Line 56:
 
<font size=2>Solution by Quantum-Phantom</font>
 
<font size=2>Solution by Quantum-Phantom</font>
  
==Solution 3==
+
==Solution 2 (Hensel's Lemma)==
 +
 
 +
We know, from Solution 1, that by Fermat's Little Theorem, <math>p\equiv 1\pmod{8}</math>, and that the smallest <math>p</math> satisfying such is <math>17</math>. Thus, we have <math>p^2=289</math> and we are attempting to lift modulo <math>17</math> to modulo <math>289</math>.
 +
 
 +
Given in the problem, it is established that <math>p^2\mid m^4 +1</math> holds true, so we can guarantee that <math>m^4\equiv 1\pmod{289}</math>. Testing for roots <math>r_0</math> modulo <math>17</math> gives us the solutions <math>r_0= \pm 2</math>, <math>\pm 8</math>, which satisfy <math>r_0^4\equiv -1 \pmod{17}</math>.
 +
 
 +
Note that we can now use Hensel's Lemma, by defining a function <math>f(x)=x^4+1</math>, giving <math>f'(x)=4x^3</math>. We know firstly that, though <math>f(r_0)</math> for all roots <math>r_0</math> we found is congruent to <math>0\pmod{17}</math>, this does not hold true for <math>f'(r_0)</math>, so we guarantee that there is one lift by Hensel's Lemma to <math>289</math> that we can perform, defined for root <math>r_1</math> that <math>r_1 = r_0-\frac{f(r_0)}{f'(r_0)}\pmod{p^k}</math>. We now break our work into four cases:
 +
 
 +
# <math>r_0 = 2</math>. <math>f(2)=17</math> and <math>f'(2)=32</math>, so <math>r_1=2-\frac{17}{32}\pmod{289}</math>, and we need to find the inverse of <math>32\equiv 15</math> modulo <math>17</math>. By the extended Euclidean algorithm, we find that <math>8\cdot 15\equiv 1 \pmod{17}</math>, and thus <math>r_1=2-17\cdot 8\equiv 155 \pmod{289}</math>.
 +
# <math>r_0 = -2</math>, or equivalent, <math>15</math>. <math>f(-2)=17</math> and <math>f'(-2)=-32</math>, so <math>r_1=-2+\frac{17}{32}\pmod{289}</math>. We already found the inverse of <math>32</math> modulo <math>17</math>, so this case has <math>r_1=-1+17\cdot 8\equiv 134 \pmod{289}</math>.
 +
# <math>r_0 = 8</math>. <math>f(8)=4097</math> and <math>f'(8)=2048</math>, so <math>r_1=-2+\frac{4097}{2048}\pmod{289}</math>, and we need to find the inverse of <math>32\equiv 8</math> modulo <math>17</math>. We already know the inverse of <math>8</math> is <math>15</math>, so we end up with <math>r_1=8-4097\cdot 15\equiv 110\pmod{289}</math>.
 +
# <math>r_0 = -8</math>, or equivalent, <math>9</math>. <math>f(-8)=4097</math> and <math>f'(-8)=-2048</math>, so <math>r_1=-8+\frac{4097}{2048}\pmod{289}</math>. We already found the inverse of <math>2048</math> modulo <math>17</math>, so this case has <math>r_1=-8+4097\cdot 15\equiv 179\pmod{289}</math>.
 +
 
 +
Thus, out of our four values for <math>m</math>, the smallest is <math>\boxed{110}</math>. Solution by [[User:Juwushu|juwushu]].
 +
 
 +
==Solution 3 (Easy, given specialized knowledge)==
 +
 
 +
Note that <math>n^4 + 1 \equiv 0 \pmod{p}</math> means <math>\text{ord}_{p}(n) = 8 \mid p-1.</math> The smallest prime that does this is <math>17</math> and <math>2^4 + 1 = 17</math> for example. Now let <math>g</math> be a primitive root of <math>17^2.</math> The satisfying <math>n</math> are of the form, <math>g^{\frac{p(p-1)}{8}}, g^{3\frac{p(p-1)}{8}}, g^{5\frac{p(p-1)}{8}}, g^{7\frac{p(p-1)}{8}}.</math> So if we find one such <math>n</math>, then all <math>n</math> are <math>n, n^3, n^5, n^7.</math> Consider the <math>2</math> from before. Note <math>17^2 \mid 2^{4 \cdot 17} + 1</math> by LTE. Hence the possible <math>n</math> are, <math>2^{17}, 2^{51}, 2^{85}, 2^{119}.</math> Some modular arithmetic yields that <math>2^{51} \equiv \boxed{110}</math> is the least value.
 +
 
 +
~Aaryabhatta1
 +
 
 +
==Solution 4 (Unfinished)==
 
We work in the ring \(\mathbb Z/289\mathbb Z\) and use the formula
 
We work in the ring \(\mathbb Z/289\mathbb Z\) and use the formula
 
<cmath>\sqrt[4]{-1}=\pm\sqrt{\frac12}\pm\sqrt{-\frac12}.</cmath>
 
<cmath>\sqrt[4]{-1}=\pm\sqrt{\frac12}\pm\sqrt{-\frac12}.</cmath>
Since \(-\frac12=144\), the expression becomes \(\pm12\pm12i\), and it is easily calculated via Hensel that \(i=38\), thus giving an answer of \(\boxed{110.00}\).
+
Since \(-\frac12=144\), the expression becomes \(\pm12\pm12i\), and it is easily calculated via Hensel that \(i=38\), thus giving an answer of \(\boxed{110}\).
 +
 
 +
==Video Solution==
 +
https://www.youtube.com/watch?v=_ambewDODiA
 +
 
 +
~MathProblemSolvingSkills.com
 +
 
 +
 
  
 
==Video Solution 1 by OmegaLearn.org==
 
==Video Solution 1 by OmegaLearn.org==
https://youtube/UyoCHBeII6g
+
https://youtu.be/UyoCHBeII6g
  
 
==Video Solution 2==
 
==Video Solution 2==

Latest revision as of 15:35, 27 September 2025

Problem

Let $p$ be the least prime number for which there exists a positive integer $n$ such that $n^{4}+1$ is divisible by $p^{2}$. Find the least positive integer $m$ such that $m^{4}+1$ is divisible by $p^{2}$.

Solution 1

If \(p=2\), then \(4\mid n^4+1\) for some integer \(n\). But \(\left(n^2\right)^2\equiv0\) or \(1\pmod4\), so it is impossible. Thus \(p\) is an odd prime.

There are two ways to do the first part:

First Method using FLT. For integer \(n\) such that \(p^2\mid n^4+1\), we have \(p\mid n^4+1\), hence \(p\nmid n^4-1\), but \(p\mid n^8-1\). By Fermat's Little Theorem, \(p\mid n^{p-1}-1\), so \begin{equation*} p\mid\gcd\left(n^{p-1}-1,n^8-1\right)=n^{\gcd(p-1,8)}-1. \end{equation*} Here, \(\gcd(p-1,8)\) mustn't be divide into \(4\) or otherwise \(p\mid n^{\gcd(p-1,8)}-1\mid n^4-1\), which contradicts. So \(\gcd(p-1,8)=8\), and so \(8\mid p-1\). The smallest such prime is clearly \(p=17=2\times8+1\).


Second Method using orders. Notice that the order modulo $p^2$ of $n^4$ must be $8$, so $8\mid\varphi(p^2)=p(p-1)$. Hence $8\mid p-1$, so $p\equiv 1\pmod{8}$. The smallest such prime is $p=17$. ~eevee9406


So we have to find the smallest positive integer \(m\) such that \(17\mid m^4+1\). We first find the remainder of \(m\) divided by \(17\) by doing \begin{array}{|c|cccccccccccccccc|} \hline \vphantom{\tfrac11}x\bmod{17}&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16\\\hline \vphantom{\dfrac11}\left(x^4\right)+1\bmod{17}&2&0&14&2&14&5&5&0&0&5&5&14&2&14&0&2\\\hline \end{array} So \(m\equiv\pm2\), \(\pm8\pmod{17}\). If \(m\equiv2\pmod{17}\), let \(m=17k+2\), by the binomial theorem, \begin{align*} 0&\equiv(17k+2)^4+1\equiv\mathrm {4\choose 1}(17k)(2)^3+2^4+1=17(1+32k)\pmod{17^2}\\[3pt] \implies0&\equiv1+32k\equiv1-2k\pmod{17}. \end{align*} So the smallest possible \(k=9\), and \(m=155\).

If \(m\equiv-2\pmod{17}\), let \(m=17k-2\), by the binomial theorem, \begin{align*} 0&\equiv(17k-2)^4+1\equiv\mathrm {4\choose 1}(17k)(-2)^3+2^4+1=17(1-32k)\pmod{17^2}\\[3pt] \implies0&\equiv1-32k\equiv1+2k\pmod{17}. \end{align*} So the smallest possible \(k=8\), and \(m=134\).

If \(m\equiv8\pmod{17}\), let \(m=17k+8\), by the binomial theorem, \begin{align*} 0&\equiv(17k+8)^4+1\equiv\mathrm {4\choose 1}(17k)(8)^3+8^4+1=17(241+2048k)\pmod{17^2}\\[3pt] \implies0&\equiv241+2048k\equiv3+8k\pmod{17}. \end{align*} So the smallest possible \(k=6\), and \(m=110\).

If \(m\equiv-8\pmod{17}\), let \(m=17k-8\), by the binomial theorem, \begin{align*} 0&\equiv(17k-8)^4+1\equiv\mathrm {4\choose 1}(17k)(-8)^3+8^4+1=17(241-2048k)\pmod{17^2}\\[3pt] \implies0&\equiv241+2048k\equiv3+9k\pmod{17}. \end{align*} So the smallest possible \(k=11\), and \(m=179\).

In conclusion, the smallest possible \(m\) is \(\boxed{110}\).

Solution by Quantum-Phantom

Solution 2 (Hensel's Lemma)

We know, from Solution 1, that by Fermat's Little Theorem, $p\equiv 1\pmod{8}$, and that the smallest $p$ satisfying such is $17$. Thus, we have $p^2=289$ and we are attempting to lift modulo $17$ to modulo $289$.

Given in the problem, it is established that $p^2\mid m^4 +1$ holds true, so we can guarantee that $m^4\equiv 1\pmod{289}$. Testing for roots $r_0$ modulo $17$ gives us the solutions $r_0= \pm 2$, $\pm 8$, which satisfy $r_0^4\equiv -1 \pmod{17}$.

Note that we can now use Hensel's Lemma, by defining a function $f(x)=x^4+1$, giving $f'(x)=4x^3$. We know firstly that, though $f(r_0)$ for all roots $r_0$ we found is congruent to $0\pmod{17}$, this does not hold true for $f'(r_0)$, so we guarantee that there is one lift by Hensel's Lemma to $289$ that we can perform, defined for root $r_1$ that $r_1 = r_0-\frac{f(r_0)}{f'(r_0)}\pmod{p^k}$. We now break our work into four cases:

  1. $r_0 = 2$. $f(2)=17$ and $f'(2)=32$, so $r_1=2-\frac{17}{32}\pmod{289}$, and we need to find the inverse of $32\equiv 15$ modulo $17$. By the extended Euclidean algorithm, we find that $8\cdot 15\equiv 1 \pmod{17}$, and thus $r_1=2-17\cdot 8\equiv 155 \pmod{289}$.
  2. $r_0 = -2$, or equivalent, $15$. $f(-2)=17$ and $f'(-2)=-32$, so $r_1=-2+\frac{17}{32}\pmod{289}$. We already found the inverse of $32$ modulo $17$, so this case has $r_1=-1+17\cdot 8\equiv 134 \pmod{289}$.
  3. $r_0 = 8$. $f(8)=4097$ and $f'(8)=2048$, so $r_1=-2+\frac{4097}{2048}\pmod{289}$, and we need to find the inverse of $32\equiv 8$ modulo $17$. We already know the inverse of $8$ is $15$, so we end up with $r_1=8-4097\cdot 15\equiv 110\pmod{289}$.
  4. $r_0 = -8$, or equivalent, $9$. $f(-8)=4097$ and $f'(-8)=-2048$, so $r_1=-8+\frac{4097}{2048}\pmod{289}$. We already found the inverse of $2048$ modulo $17$, so this case has $r_1=-8+4097\cdot 15\equiv 179\pmod{289}$.

Thus, out of our four values for $m$, the smallest is $\boxed{110}$. Solution by juwushu.

Solution 3 (Easy, given specialized knowledge)

Note that $n^4 + 1 \equiv 0 \pmod{p}$ means $\text{ord}_{p}(n) = 8 \mid p-1.$ The smallest prime that does this is $17$ and $2^4 + 1 = 17$ for example. Now let $g$ be a primitive root of $17^2.$ The satisfying $n$ are of the form, $g^{\frac{p(p-1)}{8}}, g^{3\frac{p(p-1)}{8}}, g^{5\frac{p(p-1)}{8}}, g^{7\frac{p(p-1)}{8}}.$ So if we find one such $n$, then all $n$ are $n, n^3, n^5, n^7.$ Consider the $2$ from before. Note $17^2 \mid 2^{4 \cdot 17} + 1$ by LTE. Hence the possible $n$ are, $2^{17}, 2^{51}, 2^{85}, 2^{119}.$ Some modular arithmetic yields that $2^{51} \equiv \boxed{110}$ is the least value.

~Aaryabhatta1

Solution 4 (Unfinished)

We work in the ring \(\mathbb Z/289\mathbb Z\) and use the formula \[\sqrt[4]{-1}=\pm\sqrt{\frac12}\pm\sqrt{-\frac12}.\] Since \(-\frac12=144\), the expression becomes \(\pm12\pm12i\), and it is easily calculated via Hensel that \(i=38\), thus giving an answer of \(\boxed{110}\).

Video Solution

https://www.youtube.com/watch?v=_ambewDODiA

~MathProblemSolvingSkills.com


Video Solution 1 by OmegaLearn.org

https://youtu.be/UyoCHBeII6g

Video Solution 2

https://youtu.be/F3pezlR5WHc

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png