Difference between revisions of "2024 IMO Problems/Problem 2"
Brandonyee (talk | contribs) (→Solution 1) |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
<cmath>\gcd (a^n+b,b^n+a)=g</cmath> | <cmath>\gcd (a^n+b,b^n+a)=g</cmath> | ||
holds for all integer <math>n\ge N</math>. | holds for all integer <math>n\ge N</math>. | ||
+ | |||
+ | ==Solution 1== | ||
+ | We will determine all pairs <math>(a,b)</math> of positive integers such that <math>\gcd(a^n+b,b^n+a)=g</math> for all <math>n \geq N</math>. | ||
+ | |||
+ | First, <math>(1,1)</math> works with <math>g=2</math>. Now for any solution <math>(a,b)</math>: | ||
+ | |||
+ | \begin{lemma} | ||
+ | <math>g = \gcd(a,b)</math> or <math>g = 2\gcd(a,b)</math>. | ||
+ | \end{lemma} | ||
+ | |||
+ | \begin{proof} | ||
+ | Since <math>g</math> divides both <math>a^N+b</math> and <math>a^{N+1}+b</math>, it divides their difference <math>a^N(a-1)</math>. Similarly, <math>g</math> divides <math>b^N(b-1)</math>. Thus <math>g</math> divides <math>a-b</math>, so <math>g</math> divides <math>a^N+b-(a-b)=a^N+a</math>. Hence <math>g</math> divides <math>\gcd(a^N+a,a)=\gcd(a,a-1)=1</math>, a contradiction unless <math>g</math> divides both <math>a</math> and <math>b</math>. | ||
+ | \end{proof} | ||
+ | |||
+ | Let <math>d=\gcd(a,b)</math> and write <math>a=dx</math>, <math>b=dy</math> with <math>\gcd(x,y)=1</math>. Then | ||
+ | <cmath>\gcd(a^n+b,b^n+a) = d \cdot \gcd(d^{n-1}x^n+y, d^{n-1}y^n+x)</cmath> | ||
+ | |||
+ | Using Euler's theorem, for <math>n \equiv -1 \pmod{\varphi(K)}</math> where <math>K=d^2xy+1</math>, we have: | ||
+ | <cmath>d^{n-1}x^n+y \equiv d^{-2}x^{-1}+y \equiv d^{-2}x^{-1}(1+d^2xy) \equiv 0 \pmod{K}</cmath> | ||
+ | |||
+ | Similarly, <math>d^{n-1}y^n+x \equiv 0 \pmod{K}</math>. Since these are divisible by <math>K</math>, and <math>K</math> must divide <math>g \leq 2d</math>, we must have <math>d=x=y=1</math>, giving <math>(a,b)=(1,1)</math>. | ||
+ | |||
+ | ~brandonyee | ||
==Video Solution== | ==Video Solution== | ||
https://www.youtube.com/watch?v=VXFG1t_ksfI (including motivation to derive solution) | https://www.youtube.com/watch?v=VXFG1t_ksfI (including motivation to derive solution) | ||
+ | |||
+ | ==Video Solution(Fermat's little theorem,In English)== | ||
+ | https://youtu.be/QTBcTtY46HI | ||
+ | ==Video Solution(Fermat's little theorem,In Chinese)== | ||
+ | https://youtu.be/8WOff2j0giY | ||
+ | ==Video Solution== | ||
+ | https://youtu.be/5SZUbbxoK1M | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{IMO box|year=2024|num-b=1|num-a=3}} |
Latest revision as of 23:08, 12 March 2025
Find all positive integer pairs such that there exists positive integer
holds for all integer
.
Contents
Solution 1
We will determine all pairs of positive integers such that
for all
.
First, works with
. Now for any solution
:
\begin{lemma}
or
.
\end{lemma}
\begin{proof}
Since divides both
and
, it divides their difference
. Similarly,
divides
. Thus
divides
, so
divides
. Hence
divides
, a contradiction unless
divides both
and
.
\end{proof}
Let and write
,
with
. Then
Using Euler's theorem, for where
, we have:
Similarly, . Since these are divisible by
, and
must divide
, we must have
, giving
.
~brandonyee
Video Solution
https://www.youtube.com/watch?v=VXFG1t_ksfI (including motivation to derive solution)
Video Solution(Fermat's little theorem,In English)
Video Solution(Fermat's little theorem,In Chinese)
Video Solution
See Also
2024 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |