Difference between revisions of "2017 AMC 12B Problems/Problem 24"
(→Solution 1) |
m (→Solution 5) |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
<math>\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } 2 + \sqrt{2} \qquad \textbf{(C) } \sqrt{17} \qquad \textbf{(D) } 2 + \sqrt{5} \qquad \textbf{(E) } 1 + 2\sqrt{3}</math> | <math>\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } 2 + \sqrt{2} \qquad \textbf{(C) } \sqrt{17} \qquad \textbf{(D) } 2 + \sqrt{5} \qquad \textbf{(E) } 1 + 2\sqrt{3}</math> | ||
+ | |||
+ | ==Diagram== | ||
+ | |||
+ | [[File:2017AMC12BP24.png|300px|center]] | ||
==Solution 1== | ==Solution 1== | ||
Line 10: | Line 14: | ||
\begin{align*} | \begin{align*} | ||
− | [BEC] &=[CED]=[BEA]= | + | [BEC] &=[CED]=[BEA]=\frac{x^3}{2(x^2+1)} \\ |
[ABCD] &=[AED]+[DEC]+[CEB]+[BEA] \\ | [ABCD] &=[AED]+[DEC]+[CEB]+[BEA] \\ | ||
− | (AB+CD) | + | \frac{(BC)(AB+CD)}{2} &= 17*[CEB]+ [CEB] + [CEB] + [CEB] \\ |
− | + | \frac{x^3+x}{2} &= \frac{20x^3}{2(x^2+1)} \\ | |
− | + | \frac{x}{x^2+1} &= \frac{20x^3}{x^2+1} \\ | |
(x^2+1)^2 &=20x^2 \\ | (x^2+1)^2 &=20x^2 \\ | ||
x^4-18x^2+1 &=0 \implies x^2=9+4\sqrt{5}=4+2(2\sqrt{5})+5 \\ | x^4-18x^2+1 &=0 \implies x^2=9+4\sqrt{5}=4+2(2\sqrt{5})+5 \\ | ||
+ | \end{align*} | ||
Therefore, the answer is <math>\boxed{\textbf{(D) } 2+\sqrt{5}}</math> | Therefore, the answer is <math>\boxed{\textbf{(D) } 2+\sqrt{5}}</math> | ||
Line 79: | Line 84: | ||
==Solution 5== | ==Solution 5== | ||
− | Let <math>C = (0,0), D=(\frac1a, 0), B = (0,1), A = (a,1)</math> where <math>a>1</math>. Because <math>BC = 1, a = \frac{AB}{BC}</math>. Notice that the diagonals are perpendicular with slopes of <math>\frac1a</math> and <math>-a</math>. Let the intersection of <math>AC</math> and <math>BD</math> be <math>F</math>, then <math>\triangle BFC \sim \triangle ABC</math>. However, because <math>ABCD</math> is a trapezoid, <math>\triangle</math><math>BCF</math> and <math>\triangle ADF</math> share the same area, therefore <math>\triangle</math><math>BCE</math> is the reflection of <math>\triangle</math><math>BCF</math> over the perpendicular bisector of <math>BC</math>, which is <math>y=\frac12</math>. We use the linear equations of the diagonals, <math>y = -ax + 1, y = \frac1a x</math>, to find the coordinates of <math>F</math>. <cmath>-ax+1 = \frac1ax \Longrightarrow x = \frac{1}{a+\frac1a} = \frac{a}{a^2+1}</cmath> <cmath>y = \frac1ax = \frac{1}{a^2+1}</cmath> | + | Let <math>C = (0,0), D=\left(\frac1a, 0\right), B = (0,1), A = (a,1)</math> where <math>a>1</math>. Because <math>BC = 1, a = \frac{AB}{BC}</math>. Notice that the diagonals are perpendicular with slopes of <math>\frac1a</math> and <math>-a</math>. Let the intersection of <math>AC</math> and <math>BD</math> be <math>F</math>, then <math>\triangle BFC \sim \triangle ABC</math>. However, because <math>ABCD</math> is a trapezoid, <math>\triangle</math><math>BCF</math> and <math>\triangle ADF</math> share the same area, therefore <math>\triangle</math><math>BCE</math> is the reflection of <math>\triangle</math><math>BCF</math> over the perpendicular bisector of <math>BC</math>, which is <math>y=\frac12</math>. We use the linear equations of the diagonals, <math>y = -ax + 1, y = \frac1a x</math>, to find the coordinates of <math>F</math>. <cmath>-ax+1 = \frac1ax \Longrightarrow x = \frac{1}{a+\frac1a} = \frac{a}{a^2+1}</cmath> <cmath>y = \frac1ax = \frac{1}{a^2+1}</cmath> |
The y-coordinate of <math>E</math> is simply <math>1-\frac{1}{a^2+1} = \frac{a^2}{a^2+1}</math> | The y-coordinate of <math>E</math> is simply <math>1-\frac{1}{a^2+1} = \frac{a^2}{a^2+1}</math> | ||
− | The area of <math>\triangle BCE</math> is <math>\frac12 \frac{a}{a^2+1}</math>. We apply shoelace theorem to solve for the area of <math>\triangle ADE</math>. The coordinates of the triangle are <math>\{(\frac{a}{a^2+1}, \frac{a^2}{a^2+1}), (a,1), (\frac1a, 0)\}</math>, so the area is | + | The area of <math>\triangle BCE</math> is <math>\frac12 \left(\frac{a}{a^2+1} \right)</math>. We apply shoelace theorem to solve for the area of <math>\triangle ADE</math>. The coordinates of the triangle are <math>\{(\frac{a}{a^2+1}, \frac{a^2}{a^2+1}), (a,1), (\frac1a, 0)\}</math>, so the area is |
+ | |||
+ | \begin{equation} | ||
+ | \begin{split} | ||
+ | \frac12 \left|\frac{a^3}{a^2+1} + \frac1a - \frac{a}{a^2+1} - \frac{a}{a^2+1}\right| & = \frac12 \left|\frac{a^3-2a}{a^2+1} + \frac1a \right| \\ | ||
+ | & = \frac12 \left|\frac{a^4-2a^2}{a(a^2+1)} + \frac{a^2+1}{a(a^2+1)} \right| \\ | ||
+ | & = \frac12 \left( \frac{a^4-a^2+1}{a(a^2+1)}\right). | ||
+ | \end{split} | ||
+ | \end{equation} | ||
− | + | Finally, we use the property that the ratio of areas equals <math>17</math>: | |
− | + | <cmath>\frac{\frac12\left(\frac{a^4-a^2+1}{a(a^2+1)}\right)}{\frac12\left(\frac{a}{a^2+1}\right)} = 17 \Rightarrow \frac{a^4-a^2+1}{a^2} = 17 \Rightarrow a^4-18a^2+1 = 0</cmath> | |
− | Finally, we use the property that the ratio of areas equals <math>17</math> <cmath>\frac{\frac12 | + | <cmath>a^2 = 9+4\sqrt{5} = (2+\sqrt{5})^2 \Longrightarrow a = \boxed{\textbf{(D) } 2+\sqrt{5}}.</cmath> |
− | <cmath>a^2 = 9+4\sqrt{5} = (2+\sqrt{5})^2 \Longrightarrow a = \boxed{\textbf{(D) } 2+\sqrt{5}}</cmath> | ||
~Zeric | ~Zeric | ||
+ | |||
+ | ==Solution 6== | ||
+ | |||
+ | This solution involves proving <math>\triangle AED \sim \triangle CEB</math>. | ||
+ | |||
+ | Let <math>E'</math> be the intersection of <math>AC</math> and <math>BD</math>. Label points <math>F</math> and <math>G</math> the same way as <math>\textbf{Solution 3}</math>. | ||
+ | |||
+ | |||
+ | <math>\angle AE'D = \angle CE'B = \frac{\pi}{2} = \angle AFE</math>. Additionally, <math>\frac{E'D}{FE} = \frac{E'D}{E'G} = \frac{AE'}{AF}</math>, so <math>\triangle AFE \sim \triangle AE'D</math> by SAS. Therefore, <math>\angle BAC = \angle FAE + \angle EAE' = \angle E'AD + \angle EAE' = \angle EAD</math>. | ||
+ | |||
+ | |||
+ | Next, <math>\angle AFE = \frac{\pi}{2} = \angle EGD</math> because <math>FG \parallel BC</math>. Also, <math>\pi = \angle FEA + \angle AED + \angle DEG = \angle FEA + \angle AED + \angle EAF = \frac{\pi}{2} + \angle AED</math>, so <math>\angle AED = \frac{\pi}{2}</math>. Therefore, <math>\triangle AED \sim \triangle ABC</math> by AA. Since <math>\triangle CEB \sim \triangle ABC</math>, <math>\triangle AED \sim \triangle CEB</math>. | ||
+ | |||
+ | |||
+ | Given <math>\frac{[AED]}{[CEB]} = 17</math>, we deduce that the ratio of corresponding side lengths of <math>AED</math> to <math>CEB</math> must be <math>\sqrt{17}</math>. Now, we set <math>BC = 1</math>, <math>AB = x</math>, and <math>CD = \frac{1}{x}</math>. Using the Pythagorean Theorem, <math>AD = \sqrt{\Big(x-\frac{1}{x}\Big)^2 + 1^2}</math>. Thus, <math>\sqrt{17} = \frac{AD}{CB} = \frac{\sqrt{\Big(x-\frac{1}{x}\Big)^2 + 1^2}}{1}</math>. Solving gives <math>x = 2+\sqrt{5}</math>. | ||
+ | |||
+ | |||
+ | Finally, <math>\frac{AB}{BC} = \frac{2+\sqrt{5}}{1} = \boxed{\textbf{(D) } 2+\sqrt{5}}</math>. | ||
+ | |||
+ | ~Zhixing | ||
==Video Solution by MOP 2024== | ==Video Solution by MOP 2024== |
Latest revision as of 19:44, 24 August 2025
Contents
Problem
Quadrilateral has right angles at
and
,
, and
. There is a point
in the interior of
such that
and the area of
is
times the area of
. What is
?
Diagram
Solution 1
Let ,
, and
. Note that
. By the Pythagorean Theorem,
. Since
, the ratios of side lengths must be equal. Since
,
and
. Let F be a point on
such that
is an altitude of triangle
. Note that
. Therefore,
and
. Since
and
form altitudes of triangles
and
, respectively, the areas of these triangles can be calculated. Additionally, the area of triangle
can be calculated, as it is a right triangle. Solving for each of these yields:
\begin{align*} [BEC] &=[CED]=[BEA]=\frac{x^3}{2(x^2+1)} \\ [ABCD] &=[AED]+[DEC]+[CEB]+[BEA] \\ \frac{(BC)(AB+CD)}{2} &= 17*[CEB]+ [CEB] + [CEB] + [CEB] \\ \frac{x^3+x}{2} &= \frac{20x^3}{2(x^2+1)} \\ \frac{x}{x^2+1} &= \frac{20x^3}{x^2+1} \\ (x^2+1)^2 &=20x^2 \\ x^4-18x^2+1 &=0 \implies x^2=9+4\sqrt{5}=4+2(2\sqrt{5})+5 \\ \end{align*}
Therefore, the answer is
Solution 2
Draw line through
, with
on
and
on
,
. WLOG let
,
,
. By weighted average
.
Meanwhile, . This follows from comparing the ratios of triangle DEG to CFE and triangle AEG to FEB, both pairs in which the two triangles share a height perpendicular to FG, and have base ratio
.
. We obtain
,
namely
.
The rest is the same as Solution 1.
Solution 3
Let ,
,
Note that cannot be the intersection of
and
, as that would mean
Let ,
Solution 4
Let . Then from the similar triangles condition, we compute
and
. Hence, the
-coordinate of
is just
. Since
lies on the unit circle, we can compute the
coordinate as
. By Shoelace, we want
Factoring out denominators and expanding by minors, this is equivalent to
This factors as
, so
and so the answer is
.
Solution 5
Let where
. Because
. Notice that the diagonals are perpendicular with slopes of
and
. Let the intersection of
and
be
, then
. However, because
is a trapezoid,
and
share the same area, therefore
is the reflection of
over the perpendicular bisector of
, which is
. We use the linear equations of the diagonals,
, to find the coordinates of
.
The y-coordinate of
is simply
The area of
is
. We apply shoelace theorem to solve for the area of
. The coordinates of the triangle are
, so the area is
\begin{equation} \begin{split} \frac12 \left|\frac{a^3}{a^2+1} + \frac1a - \frac{a}{a^2+1} - \frac{a}{a^2+1}\right| & = \frac12 \left|\frac{a^3-2a}{a^2+1} + \frac1a \right| \\ & = \frac12 \left|\frac{a^4-2a^2}{a(a^2+1)} + \frac{a^2+1}{a(a^2+1)} \right| \\ & = \frac12 \left( \frac{a^4-a^2+1}{a(a^2+1)}\right). \end{split} \end{equation}
Finally, we use the property that the ratio of areas equals :
~Zeric
Solution 6
This solution involves proving .
Let be the intersection of
and
. Label points
and
the same way as
.
. Additionally,
, so
by SAS. Therefore,
.
Next, because
. Also,
, so
. Therefore,
by AA. Since
,
.
Given , we deduce that the ratio of corresponding side lengths of
to
must be
. Now, we set
,
, and
. Using the Pythagorean Theorem,
. Thus,
. Solving gives
.
Finally, .
~Zhixing
Video Solution by MOP 2024
~r00tsOfUnity
Notes
1) is the most relevant answer choice because it shares numbers with the givens of the problem.
2) It's a very good guess to replace finding the area of triangle AED with the area of the triangle DAF, where F is the projection of D onto AB(then find the closest answer choice).
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.