Difference between revisions of "2025 AMC 8 Problems/Problem 11"

(Categorized problem)
 
(11 intermediate revisions by 9 users not shown)
Line 1: Line 1:
The 2025 AMC 8 is not held yet. Please do not post false problems.
+
== Problem ==
 +
 
 +
A <math>\textit{tetromino}</math> consists of four squares connected along their edges. There are five possible tetromino shapes, <math>I</math>, <math>O</math>, <math>L</math>, <math>T</math>, and <math>S</math>, shown below, which can be rotated or flipped over. Three tetrominoes are used to completely cover a <math>3\times4</math> rectangle. At least one of the tiles is an <math>S</math> tile. What are the other two tiles?
 +
 
 +
<asy>
 +
unitsize(12);
 +
 
 +
add(grid(1,4));
 +
label("I", (0.5,-1));
 +
 
 +
add(shift((5,0)) * grid(2,2));
 +
label("O", (6,-1));
 +
 
 +
add(shift((11,0)) * grid(1,3));
 +
add(shift((11,0)) * grid(2,1));
 +
label("L", (12,-1));
 +
 
 +
add(shift((18,0)) * grid(1,1));
 +
add(shift((17,1)) * grid(3,1));
 +
label("T", (18.5,-1));
 +
 
 +
add(shift((25,1)) * grid(2,1));
 +
add(shift((24,0)) * grid(2,1));
 +
label("S", (25.5,-1));
 +
 
 +
add(shift((12,-6)) * grid(4,3));
 +
</asy>
 +
 
 +
<math>\textbf{(A)}I</math> and <math>L\qquad \textbf{(B)} I</math> and <math>T\qquad \textbf{(C)} L</math> and <math>L\qquad \textbf{(D)}L</math> and <math>S\qquad \textbf{(E)}O</math> and <math>T</math>
 +
 
 +
== Solution 1 ==
 +
 
 +
The <math>3\times4</math> rectangle allows for <math>7</math> possible places to put the S piece, with each possible placement having an inverted version. One of the cases looks like this:
 +
<asy>
 +
path x = (0,0)--(0,2)--(1,2)--(1,3)--(2,3)--(2,1)--(1,1)--(1,0)--cycle;
 +
fill(x, rgb(0,30,0));
 +
add(grid(4,3));
 +
</asy>
 +
As you can see, there is a hole in the top left corner of the board, which would be impossible to fill using the tetrominos. There are three cases in which a hole isn't created; the S lies flat in the bottom left corner, it lies flat in the top right corner, or it stands upright in the center. All three tilings are shown below.
 +
<asy>
 +
path z1 = (2,0)--(3,0)--(3,2)--(2,2)--(2,3)--(1,3)--(1,1)--(2,1)--cycle;
 +
path z2 = (0,0)--(2,0)--(2,1)--(1,1)--(1,3)--(0,3)--cycle;
 +
path z3 = (2,3)--(4,3)--(4,0)--(3,0)--(3,2)--(2,2)--cycle;
 +
fill(z1, rgb(0,30,0));
 +
fill(z2, rgb(127,80,0));
 +
fill(z3, rgb(127,100,0));
 +
add(grid(4,3));
 +
</asy>
 +
 
 +
<asy>
 +
path y1 = (0,0)--(2,0)--(2,1)--(3,1)--(3,2)--(1,2)--(1,1)--(0,1)--cycle;
 +
path y2 = (0,1)--(1,1)--(1,2)--(3,2)--(3,3)--(0,3)--cycle;
 +
path y3 = (2,0)--(4,0)--(4,3)--(3,3)--(3,1)--(2,1)--cycle;
 +
fill(y1, rgb(0,30,0));
 +
fill(y2, rgb(127,80,0));
 +
fill(y3, rgb(127,100,0));
 +
add(grid(4,3));
 +
</asy>
 +
 
 +
<asy>
 +
path w1 = (1,1)--(3,1)--(3,2)--(4,2)--(4,3)--(2,3)--(2,2)--(1,2)--cycle;
 +
path w2 = (0,0)--(0,3)--(2,3)--(2,2)--(1,2)--(1,0)--cycle;
 +
path w3 = (1,0)--(4,0)--(4,2)--(3,2)--(3,1)--(1,1)--cycle;
 +
fill(w1, rgb(0,30,0));
 +
fill(w2, rgb(127,80,0));
 +
fill(w3, rgb(127,100,0));
 +
add(grid(4,3));
 +
</asy>
 +
For each of the inverted cases, the L pieces can be inverted along with the S piece. Because the only cases that fill the rectangle after the S is placed are the ones that use two L pieces, the answer must be <math>\boxed{\textbf{(C)}~L \ and \ L}</math>.
 +
~bubby617
 +
 
 +
==Video Solution (A Clever Explanation You’ll Get Instantly)==
 +
https://youtu.be/VP7g-s8akMY?si=mhn50YKL4_Yo1PH6&t=965
 +
~hsnacademy
 +
 
 +
== Video Solution 1 by Thinking Feet ==
 +
 
 +
https://youtu.be/PKMpTS6b988
 +
==Video Solution(Quick, fast, easy!)==
 +
https://youtu.be/fdG7EDW_7xk
 +
 
 +
~MC
 +
 
 +
== See Also ==
 +
 
 +
{{AMC8 box|year=2025|num-b=10|num-a=12}}
 +
{{MAA Notice}}
 +
 
 +
[[Category:Introductory Geometry Problems]]

Latest revision as of 18:43, 4 June 2025

Problem

A $\textit{tetromino}$ consists of four squares connected along their edges. There are five possible tetromino shapes, $I$, $O$, $L$, $T$, and $S$, shown below, which can be rotated or flipped over. Three tetrominoes are used to completely cover a $3\times4$ rectangle. At least one of the tiles is an $S$ tile. What are the other two tiles?

[asy] unitsize(12);  add(grid(1,4)); label("I", (0.5,-1));  add(shift((5,0)) * grid(2,2)); label("O", (6,-1));  add(shift((11,0)) * grid(1,3)); add(shift((11,0)) * grid(2,1)); label("L", (12,-1));  add(shift((18,0)) * grid(1,1)); add(shift((17,1)) * grid(3,1)); label("T", (18.5,-1));  add(shift((25,1)) * grid(2,1)); add(shift((24,0)) * grid(2,1)); label("S", (25.5,-1));  add(shift((12,-6)) * grid(4,3)); [/asy]

$\textbf{(A)}I$ and $L\qquad \textbf{(B)} I$ and $T\qquad \textbf{(C)} L$ and $L\qquad \textbf{(D)}L$ and $S\qquad \textbf{(E)}O$ and $T$

Solution 1

The $3\times4$ rectangle allows for $7$ possible places to put the S piece, with each possible placement having an inverted version. One of the cases looks like this: [asy] path x = (0,0)--(0,2)--(1,2)--(1,3)--(2,3)--(2,1)--(1,1)--(1,0)--cycle; fill(x, rgb(0,30,0)); add(grid(4,3)); [/asy] As you can see, there is a hole in the top left corner of the board, which would be impossible to fill using the tetrominos. There are three cases in which a hole isn't created; the S lies flat in the bottom left corner, it lies flat in the top right corner, or it stands upright in the center. All three tilings are shown below. [asy] path z1 = (2,0)--(3,0)--(3,2)--(2,2)--(2,3)--(1,3)--(1,1)--(2,1)--cycle; path z2 = (0,0)--(2,0)--(2,1)--(1,1)--(1,3)--(0,3)--cycle; path z3 = (2,3)--(4,3)--(4,0)--(3,0)--(3,2)--(2,2)--cycle; fill(z1, rgb(0,30,0)); fill(z2, rgb(127,80,0)); fill(z3, rgb(127,100,0)); add(grid(4,3)); [/asy]

[asy] path y1 = (0,0)--(2,0)--(2,1)--(3,1)--(3,2)--(1,2)--(1,1)--(0,1)--cycle; path y2 = (0,1)--(1,1)--(1,2)--(3,2)--(3,3)--(0,3)--cycle; path y3 = (2,0)--(4,0)--(4,3)--(3,3)--(3,1)--(2,1)--cycle; fill(y1, rgb(0,30,0)); fill(y2, rgb(127,80,0)); fill(y3, rgb(127,100,0)); add(grid(4,3)); [/asy]

[asy] path w1 = (1,1)--(3,1)--(3,2)--(4,2)--(4,3)--(2,3)--(2,2)--(1,2)--cycle; path w2 = (0,0)--(0,3)--(2,3)--(2,2)--(1,2)--(1,0)--cycle; path w3 = (1,0)--(4,0)--(4,2)--(3,2)--(3,1)--(1,1)--cycle; fill(w1, rgb(0,30,0)); fill(w2, rgb(127,80,0)); fill(w3, rgb(127,100,0)); add(grid(4,3)); [/asy] For each of the inverted cases, the L pieces can be inverted along with the S piece. Because the only cases that fill the rectangle after the S is placed are the ones that use two L pieces, the answer must be $\boxed{\textbf{(C)}~L \ and \ L}$. ~bubby617

Video Solution (A Clever Explanation You’ll Get Instantly)

https://youtu.be/VP7g-s8akMY?si=mhn50YKL4_Yo1PH6&t=965 ~hsnacademy

Video Solution 1 by Thinking Feet

https://youtu.be/PKMpTS6b988

Video Solution(Quick, fast, easy!)

https://youtu.be/fdG7EDW_7xk

~MC

See Also

2025 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png