Difference between revisions of "2023 AMC 10A Problems/Problem 18"

(Duplicate of Solution 2. It's the same thing but with different wording.)
(Adds another (slightly faster) ending to solution 2)
 
(27 intermediate revisions by 12 users not shown)
Line 1: Line 1:
==Problem==
+
== Problem ==
 
A rhombic dodecahedron is a solid with <math>12</math> congruent rhombus faces. At every vertex, <math>3</math> or <math>4</math> edges meet, depending on the vertex. How many vertices have exactly <math>3</math> edges meet?
 
A rhombic dodecahedron is a solid with <math>12</math> congruent rhombus faces. At every vertex, <math>3</math> or <math>4</math> edges meet, depending on the vertex. How many vertices have exactly <math>3</math> edges meet?
  
 
<math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9</math>
 
<math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9</math>
  
==Solution 1==
+
== Solution 1 ==
 
+
Note Euler's formula where <math>\text{Vertices}+\text{Faces}-\text{Edges}=2</math>. There are <math>12</math> faces. There are <math>24</math> edges, because there are 12 faces each with four edges and each edge is shared by two faces. Now we know that there are <math>2-12+24=14</math> vertices. Now note that the sum of the degrees of all the points is <math>48</math>(the number of edges times 2). Let <math>x=</math> the number of vertices with <math>3</math> edges. Now we know <math>\frac{3x+4(14-x)}{2}=24</math>. Solving this equation gives <math>x = \boxed{\textbf{(D) }8}</math>. ~aiden22gao ~zgahzlkw (LaTeX) ~ESAOPS (Simplified)
Note Euler's formula where <math>\text{Vertices}+\text{Faces}-\text{Edges}=2</math>.  
 
There are <math>12</math> faces.
 
There are <math>24</math> edges, because there are 12 faces each with four edges and each edge is shared by two faces.  
 
Now we know that there are <math>2-12+24=14</math> vertices.  
 
Now note that the sum of the degrees of all the points is <math>24</math>(the number of edges). Let <math>x=</math> the number of vertices with <math>3</math> edges. Now we know <math>\frac{3x+4(14-x)}{2}=24</math>. Solving this equation gives <math>x = \boxed{\textbf{(D) }8}</math>.
 
~aiden22gao ~zgahzlkw (LaTeX) ~ESAOPS (Simplified) ~sonic12345 (Fixed typo)
 
 
 
==Solution 2 (Cheese)==
 
  
 +
== Solution 2 ==
 
Let <math>x</math> be the number of vertices with 3 edges, and <math>y</math> be the number of vertices with 4 edges. Since there are <math>\frac{4*12}{2}=24</math> edges on the polyhedron, we can see that <math>\frac{3x+4y}{2}=24</math>. Then, <math>3x+4y=48</math>. Notice that by testing the answer choices, (D) is the only one that yields an integer solution for <math>y</math>. Thus, the answer is <math>\boxed{\textbf{(D) }8}</math>.
 
Let <math>x</math> be the number of vertices with 3 edges, and <math>y</math> be the number of vertices with 4 edges. Since there are <math>\frac{4*12}{2}=24</math> edges on the polyhedron, we can see that <math>\frac{3x+4y}{2}=24</math>. Then, <math>3x+4y=48</math>. Notice that by testing the answer choices, (D) is the only one that yields an integer solution for <math>y</math>. Thus, the answer is <math>\boxed{\textbf{(D) }8}</math>.
  
 
~Mathkiddie
 
~Mathkiddie
  
==Solution 3==
+
== Solution 3 ==
 +
With <math>12</math> rhombi, there are <math>4\cdot12=48</math> total boundaries. Each edge is used as a boundary twice, once for each face on either side. Thus we have <math>\dfrac{48}2=24</math> total edges.
  
With <math>12</math> rhombi, there are <math>4\cdot12=48</math> total boundaries. Each edge is used as a boundary twice, once for each face on either side. Thus we have <math>\dfrac{48}2=24</math> total edges.  
+
Let <math>A</math> be the number of vertices with <math>3</math> edges (this is what the problem asks for) and <math>B</math> be the number of vertices with <math>4</math> edges. We have <math>3A + 4B = 48</math>.
  
Let <math>A</math> be the number of vertices with <math>3</math> edges (this is what the problem asks for) and <math>B</math> be the number of vertices with <math>4</math> edges. We have <math>3A + 4B = 48</math>.
+
Euler's formula states that, for all convex polyhedra, <math>V-E+F=2</math>. In our case, <math>V-24+12=2\implies V=14.</math> We know that <math>A+B</math> is the total number of vertices as we are given that all vertices are connected to either <math>3</math> or <math>4</math> edges. Therefore, <math>A+B=14.</math>
  
Euler's formula states that, for all convex polyhedra, <math>V-E+F=2</math>. In our case, <math>V-24+12=2\implies V=14.</math> We know that <math>A+B</math> is the total number of vertices as we are given that all vertices are connected to either <math>3</math> or <math>4</math> edges. Therefore, <math>A+B=14.</math>  
+
We now have a system of two equations. Solving the system yields <math>A=\boxed{\textbf{(D) }8}</math>.
  
We now have a system of two equations. There are many ways to solve for <math>A</math>; choosing one yields <math>A=\boxed{\textbf{(D) }8}</math>.  
+
Even without Euler's formula, we can do a bit of answer guessing. From <math>3A+4B=48</math>, we take mod <math>4</math> on both sides.
  
Even without Euler's formula, we can do a bit of answer guessing. From <math>3A+4B=48</math>, we take mod <math>4</math> on both sides.
+
<cmath>3A+4B\equiv48\pmod{4}</cmath><cmath>3A\equiv0\pmod{4}</cmath>
  
<cmath>3A+4B\equiv48~(\mod{4})</cmath>
+
We know that <math>3A</math> must be divisible by <math>4</math>. We know that the factor of <math>3</math> will not affect the divisibility by <math>4</math> of <math>3A</math>, so we remove the <math>3</math>. We know that <math>A</math> is divisible by <math>4</math>. Checking answer choices, the only one divisible by <math>4</math> is indeed <math>A=\boxed{\textbf{(D) }8}</math>.
<cmath>3A\equiv0~(\mod{4})</cmath>
 
 
 
We know that <math>3A</math> must be divisible by <math>4</math>. We know that the factor of <math>3</math> will not affect the divisibility by <math>4</math> of <math>3A</math>, so we remove the <math>3</math>. We know that <math>A</math> is divisible by <math>4</math>. Checking answer choices, the only one divisible by <math>4</math> is indeed <math>A=\boxed{\textbf{(D) }8}</math>.  
 
  
 
~Technodoggo ~zgahzlkw (small edits) ~ESAOPS (LaTeX)
 
~Technodoggo ~zgahzlkw (small edits) ~ESAOPS (LaTeX)
  
==Solution 4==
+
== Solution 4 ==
Note that Euler's formula is <math>V+F-E=2</math>. We know <math>F=12</math> from the question. We also know <math>E = \frac{12 \cdot 4}{2} = 24</math> because every face has <math>4</math> edges and every edge is shared by <math>2</math> faces. We can solve for the vertices based on this information.  
+
Note that Euler's formula is <math>V+F-E=2</math>. We know <math>F=12</math> from the question. We also know <math>E = \frac{12 \cdot 4}{2} = 24</math> because every face has <math>4</math> edges and every edge is shared by <math>2</math> faces. We can solve for the vertices based on this information.
  
Using the formula we can find:  
+
Using the formula we can find:<cmath>V + 12 - 24 = 2</cmath><cmath>V = 14</cmath>Let <math>t</math> be the number of vertices with <math>3</math> edges and <math>f</math> be the number of vertices with <math>4</math> edges. We know <math>t+f = 14</math> from the question and <math>3t + 4f = 48</math>. The second equation is because the total number of points is <math>48</math> because there are 12 rhombuses of <math>4</math> vertices. Now, we just have to solve a system of equations.<cmath>3t + 4f = 48</cmath><cmath>3t + 3f = 42</cmath><cmath>f = 6</cmath><cmath>t = 8</cmath>Our answer is simply just <math>t</math>, which is <math>\boxed{\textbf{(D) }8}</math> ~musicalpenguin
<cmath>V + 12 - 24 = 2</cmath>
 
<cmath>V = 14</cmath>
 
Let <math>t</math> be the number of vertices with <math>3</math> edges and <math>f</math> be the number of vertices with <math>4</math> edges. We know <math>t+f = 14</math> from the question and <math>3t + 4f = 48</math>. The second equation is because the total number of points is <math>48</math> because there are 12 rhombuses of <math>4</math> vertices.
 
Now, we just have to solve a system of equations.
 
<cmath>3t + 4f = 48</cmath>
 
<cmath>3t + 3f = 42</cmath>
 
<cmath>f = 6</cmath>
 
<cmath>t = 8</cmath>
 
Our answer is simply just <math>t</math>, which is <math>\boxed{\textbf{(D) }8}</math>
 
~musicalpenguin
 
  
==Solution 5==
+
== Solution 5 ==
 
Each of the twelve rhombi has two pairs of angles across from each other that must be congruent. If both pairs of angles occur at <math>4</math>-point intersections, we have a grid of squares. If both occur at <math>3</math>-point intersections, we would have a cube with six square faces. Therefore, two of the points must occur at a <math>3</math>-point intersection and two at a <math>4</math>-point intersection.
 
Each of the twelve rhombi has two pairs of angles across from each other that must be congruent. If both pairs of angles occur at <math>4</math>-point intersections, we have a grid of squares. If both occur at <math>3</math>-point intersections, we would have a cube with six square faces. Therefore, two of the points must occur at a <math>3</math>-point intersection and two at a <math>4</math>-point intersection.
  
Line 60: Line 41:
 
<math>\frac{2\cdot12}{3}</math>
 
<math>\frac{2\cdot12}{3}</math>
  
Hence: <math>\boxed{\textbf{(D) }8}</math>
+
Hence: <math>\boxed{\textbf{(D) }8}</math> ~hollph27 ~Minor edits by FutureSphinx
~hollph27
 
~Minor edits by FutureSphinx
 
  
==Solution 6 (Based on previous knowledge)==
+
== Solution 6 (Based on previous knowledge) ==
Note that a rhombic dodecahedron is formed when a cube is turned inside out (as seen [https://en.wikipedia.org/wiki/Rhombic_dodecahedron#/media/File:R1-cube.gif here]), thus there are 6 4-vertices (corresponding to each face of the cube) and 8 3-vertices (corresponding to each corner of the cube). Thus the answer is <math>\boxed{\textbf{(D) }8}</math>
+
Note that a rhombic dodecahedron is formed when a cube is turned inside out (as seen here), thus there are 6 4-vertices (corresponding to each face of the cube) and 8 3-vertices (corresponding to each corner of the cube). Thus the answer is <math>\boxed{\textbf{(D) }8}</math>
  
==Solution 8 (Dual)==
+
== Solution 7 (Dual) ==
Note that a rhombic dodecahedron is the dual of a cuboctahedron. A cuboctahedron has <math>8</math> triangular faces, which correspond to <math>\boxed{\textbf{(D) }8}</math> vertices on a rhombic dodecahedron that have <math>3</math> edges.  
+
Note that a rhombic dodecahedron is the dual of a cuboctahedron. A cuboctahedron has <math>8</math> triangular faces, which correspond to <math>\boxed{\textbf{(D) }8}</math> vertices on a rhombic dodecahedron that have <math>3</math> edges.
  
==Video Solution by Math-X (First fully understand the problem!!!)==
+
== Solution 8 (Uses Solution 2)==
 +
Continue through solution 2 until you get <math>3x+4y=48</math>. Then we have that <math>3x = 48-4y = 4(12-y) = \text{multiple of 4}</math> so <math>x</math> is a multiple of <math>4.</math> The only multiple of 4 answer choice is <math>8 = \boxed{(D)}</math>
 +
 
 +
~KindToucan
 +
 
 +
== Video Solution (Easy To Follow)==
 +
https://www.youtube.com/watch?v=SFxfxXsJaN8&t=7s
 +
==Video Solution by Little Fermat==
 +
https://youtu.be/h2Pf2hvF1wE?si=KLoAqmdqx_C55pEq&t=4063
 +
~little-fermat
 +
 
 +
== Video Solution by Math-X (First fully understand the problem!!!) ==
 
https://youtu.be/GP-DYudh5qU?si=fFif-OiVZnkdTTv0&t=5105
 
https://youtu.be/GP-DYudh5qU?si=fFif-OiVZnkdTTv0&t=5105
  
 
~Math-X
 
~Math-X
  
==Video Solution ==
+
== Video Solution ==
 
https://youtu.be/5OuzPFvJPEY
 
https://youtu.be/5OuzPFvJPEY
  
== Video Solution==
+
== Video Solution ==
 
 
 
https://www.youtube.com/watch?v=Z-OCnHUwnj0
 
https://www.youtube.com/watch?v=Z-OCnHUwnj0
  
==Video Solution by OmegaLearn==
+
== Video Solution by OmegaLearn ==
 
https://youtu.be/0AG5XmWY-D8
 
https://youtu.be/0AG5XmWY-D8
  
==Video Solution by TheBeautyofMath==
+
== Video Solution by TheBeautyofMath ==
 
https://www.youtube.com/watch?v=zvKijDeiYUs
 
https://www.youtube.com/watch?v=zvKijDeiYUs
  
==Video Solution==
+
== Video Solution ==
 
 
 
https://youtu.be/0ssjr8KjOzk
 
https://youtu.be/0ssjr8KjOzk
  
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
  
==See Also Cheese==
+
==See Also==
 +
https://en.wikipedia.org/wiki/Rhombic_dodecahedron
 +
 
 
{{AMC10 box|year=2023|ab=A|num-b=17|num-a=19}}
 
{{AMC10 box|year=2023|ab=A|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:05, 23 September 2025

Problem

A rhombic dodecahedron is a solid with $12$ congruent rhombus faces. At every vertex, $3$ or $4$ edges meet, depending on the vertex. How many vertices have exactly $3$ edges meet?

$\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9$

Solution 1

Note Euler's formula where $\text{Vertices}+\text{Faces}-\text{Edges}=2$. There are $12$ faces. There are $24$ edges, because there are 12 faces each with four edges and each edge is shared by two faces. Now we know that there are $2-12+24=14$ vertices. Now note that the sum of the degrees of all the points is $48$(the number of edges times 2). Let $x=$ the number of vertices with $3$ edges. Now we know $\frac{3x+4(14-x)}{2}=24$. Solving this equation gives $x = \boxed{\textbf{(D) }8}$. ~aiden22gao ~zgahzlkw (LaTeX) ~ESAOPS (Simplified)

Solution 2

Let $x$ be the number of vertices with 3 edges, and $y$ be the number of vertices with 4 edges. Since there are $\frac{4*12}{2}=24$ edges on the polyhedron, we can see that $\frac{3x+4y}{2}=24$. Then, $3x+4y=48$. Notice that by testing the answer choices, (D) is the only one that yields an integer solution for $y$. Thus, the answer is $\boxed{\textbf{(D) }8}$.

~Mathkiddie

Solution 3

With $12$ rhombi, there are $4\cdot12=48$ total boundaries. Each edge is used as a boundary twice, once for each face on either side. Thus we have $\dfrac{48}2=24$ total edges.

Let $A$ be the number of vertices with $3$ edges (this is what the problem asks for) and $B$ be the number of vertices with $4$ edges. We have $3A + 4B = 48$.

Euler's formula states that, for all convex polyhedra, $V-E+F=2$. In our case, $V-24+12=2\implies V=14.$ We know that $A+B$ is the total number of vertices as we are given that all vertices are connected to either $3$ or $4$ edges. Therefore, $A+B=14.$

We now have a system of two equations. Solving the system yields $A=\boxed{\textbf{(D) }8}$.

Even without Euler's formula, we can do a bit of answer guessing. From $3A+4B=48$, we take mod $4$ on both sides.

\[3A+4B\equiv48\pmod{4}\]\[3A\equiv0\pmod{4}\]

We know that $3A$ must be divisible by $4$. We know that the factor of $3$ will not affect the divisibility by $4$ of $3A$, so we remove the $3$. We know that $A$ is divisible by $4$. Checking answer choices, the only one divisible by $4$ is indeed $A=\boxed{\textbf{(D) }8}$.

~Technodoggo ~zgahzlkw (small edits) ~ESAOPS (LaTeX)

Solution 4

Note that Euler's formula is $V+F-E=2$. We know $F=12$ from the question. We also know $E = \frac{12 \cdot 4}{2} = 24$ because every face has $4$ edges and every edge is shared by $2$ faces. We can solve for the vertices based on this information.

Using the formula we can find:\[V + 12 - 24 = 2\]\[V = 14\]Let $t$ be the number of vertices with $3$ edges and $f$ be the number of vertices with $4$ edges. We know $t+f = 14$ from the question and $3t + 4f = 48$. The second equation is because the total number of points is $48$ because there are 12 rhombuses of $4$ vertices. Now, we just have to solve a system of equations.\[3t + 4f = 48\]\[3t + 3f = 42\]\[f = 6\]\[t = 8\]Our answer is simply just $t$, which is $\boxed{\textbf{(D) }8}$ ~musicalpenguin

Solution 5

Each of the twelve rhombi has two pairs of angles across from each other that must be congruent. If both pairs of angles occur at $4$-point intersections, we have a grid of squares. If both occur at $3$-point intersections, we would have a cube with six square faces. Therefore, two of the points must occur at a $3$-point intersection and two at a $4$-point intersection.

Since each $3$-point intersection has $3$ adjacent rhombuses, we know the number of $3$-point intersections must equal the number of $3$-point intersections per rhombus times the number of rhombuses over $3$. Since there are $12$ rhombuses and two $3$-point intersections per rhombus, this works out to be:

$\frac{2\cdot12}{3}$

Hence: $\boxed{\textbf{(D) }8}$ ~hollph27 ~Minor edits by FutureSphinx

Solution 6 (Based on previous knowledge)

Note that a rhombic dodecahedron is formed when a cube is turned inside out (as seen here), thus there are 6 4-vertices (corresponding to each face of the cube) and 8 3-vertices (corresponding to each corner of the cube). Thus the answer is $\boxed{\textbf{(D) }8}$

Solution 7 (Dual)

Note that a rhombic dodecahedron is the dual of a cuboctahedron. A cuboctahedron has $8$ triangular faces, which correspond to $\boxed{\textbf{(D) }8}$ vertices on a rhombic dodecahedron that have $3$ edges.

Solution 8 (Uses Solution 2)

Continue through solution 2 until you get $3x+4y=48$. Then we have that $3x = 48-4y = 4(12-y) = \text{multiple of 4}$ so $x$ is a multiple of $4.$ The only multiple of 4 answer choice is $8 = \boxed{(D)}$

~KindToucan

Video Solution (Easy To Follow)

https://www.youtube.com/watch?v=SFxfxXsJaN8&t=7s

Video Solution by Little Fermat

https://youtu.be/h2Pf2hvF1wE?si=KLoAqmdqx_C55pEq&t=4063 ~little-fermat

Video Solution by Math-X (First fully understand the problem!!!)

https://youtu.be/GP-DYudh5qU?si=fFif-OiVZnkdTTv0&t=5105

~Math-X

Video Solution

https://youtu.be/5OuzPFvJPEY

Video Solution

https://www.youtube.com/watch?v=Z-OCnHUwnj0

Video Solution by OmegaLearn

https://youtu.be/0AG5XmWY-D8

Video Solution by TheBeautyofMath

https://www.youtube.com/watch?v=zvKijDeiYUs

Video Solution

https://youtu.be/0ssjr8KjOzk

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

https://en.wikipedia.org/wiki/Rhombic_dodecahedron

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png