Difference between revisions of "2004 AMC 12B Problems/Problem 24"
(2004 AMC 12B Problems/Problem 24 moved to 2004 AMC 12B Problems/Problem 23: whoops, this is #23) |
(→See also) |
||
| (5 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
| − | + | == Problem == | |
| + | In <math>\triangle ABC</math>, <math>AB = BC</math>, and <math>\overline{BD}</math> is an [[altitude]]. Point <math>E</math> is on the extension of <math>\overline{AC}</math> such that <math>BE = 10</math>. The values of <math>\tan \angle CBE</math>, <math>\tan \angle DBE</math>, and <math>\tan \angle ABE</math> form a [[geometric progression]], and the values of <math>\cot \angle DBE,</math> <math>\cot \angle CBE,</math> <math>\cot \angle DBC</math> form an [[arithmetic progression]]. What is the area of <math>\triangle ABC</math>? | ||
| + | |||
| + | <center><asy> | ||
| + | size(120); | ||
| + | defaultpen(0.7); | ||
| + | pair A = (0,0), D = (5*2^.5/3,0), C = (10*2^.5/3,0), B = (5*2^.5/3,5*2^.5), E = (13*2^.5/3,0); | ||
| + | draw(A--D--C--E--B--C--D--B--cycle); | ||
| + | label("\(A\)",A,S); | ||
| + | label("\(B\)",B,N); | ||
| + | label("\(C\)",C,S); | ||
| + | label("\(D\)",D,S); | ||
| + | label("\(E\)",E,S); | ||
| + | </asy></center> | ||
| + | |||
| + | <math>\mathrm{(A)}\ 16 | ||
| + | \qquad\mathrm{(B)}\ \frac {50}3 | ||
| + | \qquad\mathrm{(C)}\ 10\sqrt{3} | ||
| + | \qquad\mathrm{(D)}\ 8\sqrt{5} | ||
| + | \qquad\mathrm{(E)}\ 18</math> | ||
| + | == Solution == | ||
| + | Let <math>\alpha = DBC</math>. Then the first condition tells us that | ||
| + | <cmath> | ||
| + | \tan^2 DBE = \tan(DBE - \alpha)\tan(DBE + \alpha) = \frac {\tan^2 DBE - \tan^2 \alpha}{1 - \tan ^2 DBE \tan^2 \alpha}, | ||
| + | </cmath> | ||
| + | and multiplying out gives us <math>(\tan^4 DBE - 1) \tan^2 \alpha = 0</math>. Since <math>\tan\alpha \neq 0</math>, we have <math>\tan^4 DBE = 1 \Longrightarrow \angle DBE = 45^{\circ}</math>. | ||
| + | |||
| + | The second condition tells us that <math>2\cot (45 - \alpha) = 1 + \cot \alpha</math>. Expanding, we have <math>1 + \cot \alpha = 2\left[\frac {\cot \alpha + 1}{\cot \alpha - 1}\right] \Longrightarrow (\cot \alpha - 3)(\cot \alpha + 1) = 0</math>. Evidently <math>\cot \alpha \neq - 1</math>, so we get <math>\cot \alpha = 3</math>. | ||
| + | |||
| + | Now <math>BD = 5\sqrt {2}</math> and <math>AC = \frac {2BD} {\cot \alpha} = \frac {10\sqrt {2}}{3}</math>. Thus, <math>[ABC] = \frac {1}{2} \cdot 5\sqrt {2} \cdot \frac {10\sqrt {2}}{3} = \frac {50}{3}\ \mathrm{(B)}</math>. | ||
| + | |||
| + | == See also == | ||
| + | {{AMC12 box|year=2004|ab=B|num-b=23|num-a=25}} | ||
| + | |||
| + | [[Category:Intermediate Geometry Problems]] | ||
| + | [[Category:Intermediate Trigonometry Problems]] | ||
| + | {{MAA Notice}} | ||
Latest revision as of 18:59, 3 July 2013
Problem
In
,
, and
is an altitude. Point
is on the extension of
such that
. The values of
,
, and
form a geometric progression, and the values of
form an arithmetic progression. What is the area of
?
![[asy] size(120); defaultpen(0.7); pair A = (0,0), D = (5*2^.5/3,0), C = (10*2^.5/3,0), B = (5*2^.5/3,5*2^.5), E = (13*2^.5/3,0); draw(A--D--C--E--B--C--D--B--cycle); label("\(A\)",A,S); label("\(B\)",B,N); label("\(C\)",C,S); label("\(D\)",D,S); label("\(E\)",E,S); [/asy]](http://latex.artofproblemsolving.com/c/5/a/c5ae6e04f0710cb08f0e10ffc47a0f257844910e.png)
Solution
Let
. Then the first condition tells us that
and multiplying out gives us
. Since
, we have
.
The second condition tells us that
. Expanding, we have
. Evidently
, so we get
.
Now
and
. Thus,
.
See also
| 2004 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 23 |
Followed by Problem 25 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.