Difference between revisions of "2006 Canadian MO Problems/Problem 1"
(→Solution) |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>f(n,k)</math> be the number of ways distributing <math>k</math> candies to <math>n</math> children so that each child receives at most two candies. For example, <math>f(3,7)=0</math>, <math>f(3,6)=1</math>, and <math>f(3,4)=6</math>. Evaluate <math>f(2006,1)+f(2006,4)+f(2006,7)+\dots+f(2006,1003)</math>. | Let <math>f(n,k)</math> be the number of ways distributing <math>k</math> candies to <math>n</math> children so that each child receives at most two candies. For example, <math>f(3,7)=0</math>, <math>f(3,6)=1</math>, and <math>f(3,4)=6</math>. Evaluate <math>f(2006,1)+f(2006,4)+f(2006,7)+\dots+f(2006,1003)</math>. | ||
− | |||
− | <math> | + | ==Solution== |
+ | <math>x_1 + \cdots + x_{2006} = k</math> | ||
− | <math>\ | + | <math>x_i \in \{0,1,2\}</math> |
− | <math>\ | + | <math>\therefore</math> generating function for one student is <math>f(x) = (x^0 + x^1 + x^2)</math> |
− | <math> | + | generating function for <math>n</math> many students is <math>f(x)^n = (x^0 + x^1 + x^2)^n</math> |
− | <math>\ | + | <math>\therefore</math> generating function for 2006 many students is <math>(x^0 + x^1 + x^2)^{2006}</math> |
+ | Let <math>g(x) = (x^0 + x^1 + x^2)^{2006} = (1 + x + x^2)^{2006}</math> | ||
+ | |||
+ | <math>g(x) = \sum_{k=0}^{2 \cdot 2006} f(2006, k) x^k</math> | ||
+ | |||
+ | <math>\sum_{k=0}^{2 \cdot 2006} f(2006, k) x^k = g(x)</math> | ||
+ | |||
+ | <math>\therefore</math> coefficient of <math>x^{3k+1}</math> is <math>f(2006, 3k+1)</math>, \quad <math>k \in \{0,1,\dots\}</math> | ||
+ | |||
+ | Take <math>h(x) = g(x) x^{-1} = \frac{(1 + x + x^2)^{2006}}{x}</math> | ||
+ | |||
+ | Then <math>\sum_{k=1}^{1337} f(2006, 3k+1)</math> is the sum of the coefficients of <math>x^{3m},\ m \in \mathbb{N}</math> in <math>h(x)</math> | ||
+ | |||
+ | <math>\omega = e^{2\pi i/3}</math> \quad (third root of unity) | ||
+ | |||
+ | and since <math>1 + \omega + \omega^2 = 0</math> | ||
+ | |||
+ | the other coefficients vanish when we add up | ||
+ | |||
+ | <math>g(\omega^2) + g(\omega) + g(1) = \frac{(1 + \omega + \omega^2)^{2006}}{\omega} + \frac{(1 + \omega^2 + \omega^4)^{2006}}{\omega^2} + \frac{3^{2006}}{1}</math> | ||
+ | |||
+ | <math>= \frac{3^{2006}}{1} + \frac{0}{\omega^2} + \frac{0}{\omega} = 3^{2006}</math> | ||
+ | |||
+ | and since we added up the same coefficient thrice, we need to divide it by <math>3</math> | ||
+ | |||
+ | <math>\therefore \sum_{k=1}^{1337} f(2006, 3k+1) = \frac{3^{2006}}{3} = 3^{2005}</math> | ||
+ | ~Ishan | ||
==See also== | ==See also== | ||
*[[2006 Canadian MO]] | *[[2006 Canadian MO]] | ||
{{CanadaMO box|year=2006|before=First question|num-a=2}} | {{CanadaMO box|year=2006|before=First question|num-a=2}} |
Latest revision as of 12:22, 20 May 2025
Problem
Let be the number of ways distributing
candies to
children so that each child receives at most two candies. For example,
,
, and
. Evaluate
.
Solution
generating function for one student is
generating function for many students is
generating function for 2006 many students is
Let
coefficient of
is
, \quad
Take
Then is the sum of the coefficients of
in
\quad (third root of unity)
and since
the other coefficients vanish when we add up
and since we added up the same coefficient thrice, we need to divide it by
~Ishan
See also
2006 Canadian MO (Problems) | ||
Preceded by First question |
1 • 2 • 3 • 4 • 5 | Followed by Problem 2 |