Difference between revisions of "2011 AMC 8 Problems/Problem 13"
(→Solution 3(similar to Solution 1)) |
m (Removed a setence harrasing someones capabilitys in math) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 16: | Line 16: | ||
<math> \textbf{(A)}\ 15\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 25 </math> | <math> \textbf{(A)}\ 15\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 25 </math> | ||
− | |||
− | |||
==Solution 2== | ==Solution 2== | ||
Line 26: | Line 24: | ||
To find the overlap length, we do the total length of the squares and subtract <math>25</math>(side length of figure). <math>(15 + 15) - 25 = 5</math>, so the overlap length is <math>5</math>. To find what percentage of <math>AQRD</math> is shaded, we divide the shaded part by the area of the <math>AQRD</math>, so the percentage is <math>\dfrac{15 \cdot 5}{15 \cdot 25}</math> = <math>\dfrac{5}{25}</math> = <math>\dfrac{1}{5}</math> = <math>\dfrac{20}{100}</math> = <math>20</math>%, so the answer is <math>\boxed{ \textbf{(C)}\ \text{20} }</math>. | To find the overlap length, we do the total length of the squares and subtract <math>25</math>(side length of figure). <math>(15 + 15) - 25 = 5</math>, so the overlap length is <math>5</math>. To find what percentage of <math>AQRD</math> is shaded, we divide the shaded part by the area of the <math>AQRD</math>, so the percentage is <math>\dfrac{15 \cdot 5}{15 \cdot 25}</math> = <math>\dfrac{5}{25}</math> = <math>\dfrac{1}{5}</math> = <math>\dfrac{20}{100}</math> = <math>20</math>%, so the answer is <math>\boxed{ \textbf{(C)}\ \text{20} }</math>. | ||
+ | |||
+ | ~NXC | ||
==Video Solution== | ==Video Solution== |
Latest revision as of 14:50, 12 January 2025
Contents
Problem
Two congruent squares, and
, have side length
. They overlap to form the
by
rectangle
shown. What percent of the area of rectangle
is shaded?
Solution 2
The length of BP is 5. the ratio of the areas is
-Megacleverstarfish15
Solution 3(similar to Solution 1)
To find the overlap length, we do the total length of the squares and subtract (side length of figure).
, so the overlap length is
. To find what percentage of
is shaded, we divide the shaded part by the area of the
, so the percentage is
=
=
=
=
%, so the answer is
.
~NXC
Video Solution
https://www.youtube.com/watch?v=mYn6tNxrWBU
~==SpreadTheMathLove==
Video Solution by WhyMath
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.