|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | {{duplicate|[[2025 AMC 10A Problems/Problem 21|2025 AMC 10A #21]] and [[2025 AMC 12A Problems/Problem 18|2024 AMC 12A #18]]}}
| |
− | Let <math>ABCD</math> be a square with side length 10. Points <math>P</math> and <math>Q</math> lie on sides <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, such that <math>AP = BQ = 2</math>. Let <math>R</math> be the intersection of segments <math>\overline{AQ}</math> and <math>\overline{DP}</math>.
| |
| | | |
− |
| |
− |
| |
− | What is the area of triangle <math>\triangle APR</math>?
| |
− |
| |
− |
| |
− |
| |
− | <asy>
| |
− |
| |
− | pair A,B,C,D,P,Q,R;
| |
− |
| |
− | A=(0,0);
| |
− |
| |
− | B=(20,0);
| |
− |
| |
− | C=(20,20);
| |
− |
| |
− | D=(0,20);
| |
− |
| |
− | P=(4,0);
| |
− |
| |
− | Q=(20,4);
| |
− |
| |
− | R=intersectionpoint(A--Q, D--P);
| |
− |
| |
− |
| |
− |
| |
− | draw(A--B--C--D--cycle);
| |
− |
| |
− | draw(A--Q--C);
| |
− |
| |
− | draw(D--P--B);
| |
− |
| |
− | dot(A);
| |
− |
| |
− | dot(B);
| |
− |
| |
− | dot(C);
| |
− |
| |
− | dot(D);
| |
− |
| |
− | dot(P);
| |
− |
| |
− | dot(Q);
| |
− |
| |
− | dot(R);
| |
− |
| |
− | label("$A$",A,SW);
| |
− |
| |
− | label("$B$",B,SE);
| |
− |
| |
− | label("$C$",C,NE);
| |
− |
| |
− | label("$D$",D,NW);
| |
− |
| |
− | label("$P$",P,NW);
| |
− |
| |
− | label("$Q$",Q,SE);
| |
− |
| |
− | label("$R$",R,N);
| |
− |
| |
− | label("$10$", (A+B)/2, S);
| |
− |
| |
− | label("$2$", (A+P)/2, S);
| |
− |
| |
− | label("$2$", (B+Q)/2, E);
| |
− |
| |
− | </asy>
| |
− |
| |
− |
| |
− |
| |
− | <math>\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 5/3 \qquad\textbf{(C)}\ 10/3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 6</math>
| |
− |
| |
− |
| |
− |
| |
− | ==Solution==
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | We can find the area of <math>\triangle APR</math> by finding its base and height.
| |
− |
| |
− |
| |
− |
| |
− | * Base: <math>AP = 2</math>
| |
− |
| |
− | * Height: To find the height, we can use similar triangles.
| |
− |
| |
− | * <math>\triangle APR \sim \triangle AQD</math>
| |
− |
| |
− | * So, <math>\frac{AP}{AQ} = \frac{PR}{QD}</math>
| |
− |
| |
− | * Substituting the values, we get: <math>\frac{2}{12} = \frac{PR}{10}</math>
| |
− |
| |
− | * Solving for <math>PR</math>, we get <math>PR = \frac{5}{3}</math>.
| |
− |
| |
− |
| |
− |
| |
− | Therefore, the area of <math>\triangle APR = \frac{1}{2} \cdot base \cdot height = \frac{1}{2} \cdot 2 \cdot \frac{5}{3} = \textbf{(B)} \frac{5}{3} \qquad\square</math>
| |
− |
| |
− | ==See also==
| |
− |
| |
− | {{AMC10 box|year=2025|ab=A|num-b=20|num-a=22}}
| |
− | {{AMC12 box|year=2025|ab=A|num-b=17|num-a=19}}
| |
− | {{MAA Notice}}
| |