Difference between revisions of "2024 AIME II Problems/Problem 10"

(Solution 8)
m (Solution 1 (Similar Triangles and PoP))
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>\triangle ABC</math> have circumcenter <math>O</math> and incenter <math>I</math> with <math>\overline{IA}\perp\overline{OI}</math>, circumradius <math>13</math>, and inradius <math>6</math>. Find <math>AB\cdot AC</math>.
+
Let <math>\triangle</math><math>ABC</math> have incenter <math>I</math>, circumcenter <math>O</math>, inradius <math>6</math>, and circumradius <math>13</math>. Suppose that <math>\overline{IA} \perp \overline{OI}</math>. Find <math>AB \cdot AC</math>.
  
 +
==Video solution by [[User:grogg007|grogg007]]==
 +
https://youtu.be/2SwjLBNsZXc
 
==Solution 1 (Similar Triangles and PoP)==
 
==Solution 1 (Similar Triangles and PoP)==
  
Line 46: Line 48:
  
 
We'll tackle the initial steps of the problem in two different manners, both leading us to the same final calculations.
 
We'll tackle the initial steps of the problem in two different manners, both leading us to the same final calculations.
 +
 
==Solution 1.1==
 
==Solution 1.1==
 
Since <math>I</math> is the incenter, <math>\angle BAL \cong \angle DAC</math>. Furthermore, <math>\angle ABC</math> and <math>\angle ADC</math> are both subtended by the same arc <math>AC</math>, so <math>\angle ABC \cong \angle ADC.</math> Therefore by AA similarity, <math>\triangle ABL \sim \triangle ADC</math>.  
 
Since <math>I</math> is the incenter, <math>\angle BAL \cong \angle DAC</math>. Furthermore, <math>\angle ABC</math> and <math>\angle ADC</math> are both subtended by the same arc <math>AC</math>, so <math>\angle ABC \cong \angle ADC.</math> Therefore by AA similarity, <math>\triangle ABL \sim \triangle ADC</math>.  
Line 65: Line 68:
 
Substituting, we  get <cmath>AB \cdot AC = CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL}</cmath>
 
Substituting, we  get <cmath>AB \cdot AC = CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL}</cmath>
  
Lemma 1: BD = CD = ID
+
<math>\textbf{Lemma 1:}\quad</math>  <math>BD = CD = ID</math>
  
 
Proof:  
 
Proof:  
Line 278: Line 281:
  
 
Taking <math>(1) - (2)</math>, we get
 
Taking <math>(1) - (2)</math>, we get
\[
+
<cmath>
 
4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} .
 
4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} .
\]
+
</cmath>
  
 
We have
 
We have
Line 289: Line 292:
  
 
Plugging this into the above equation, we get
 
Plugging this into the above equation, we get
\[
+
<cmath>
 
\cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3)
 
\cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3)
\]
+
</cmath>
  
 
Now, we analyze Equation (2). We have
 
Now, we analyze Equation (2). We have
Line 301: Line 304:
  
 
Solving Equations (3) and (4), we get
 
Solving Equations (3) and (4), we get
\[
+
<cmath>
 
\cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm}
 
\cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm}
 
\cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5)
 
\cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5)
\]
+
</cmath>
  
 
Now, we compute <math>AB \cdot AC</math>. We have
 
Now, we compute <math>AB \cdot AC</math>. We have
Line 319: Line 322:
  
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
 
 
 
  
 
==Solution 5 (Trig)==
 
==Solution 5 (Trig)==
Line 395: Line 394:
 
==Solution 9==
 
==Solution 9==
  
We know that the area of <math>\triangle{ABC}</math> is equal to <math>\frac{abc}{4R}</math>, but is also equal to <math>\frac{a+b+c}{2}r</math>, where R is the circumcircle and r is the incircle. So, <math>abc = 156(a+b+c). Let's extend </math>AI<math> so it intersects the circumcircle of </math>\triangle{ABC}<math> at </math>P<math>. Something that we see is that </math>\triangle{AIO}<math> is congruent to </math>\triangle{PIO}<math>. Something else that we notice that since </math>AI<math> is the angle bisector of </math>\angle{A}<math>, P is the midpoint of arc </math>BC<math>. Now, let's try calculating AI. By Euler's Theorem, </math>OI^{2} = R^{2} - 2Rr<math> where R is the circumcircle and r is the incircle, so </math>OI = \sqrt{13}<math>. Using Pythagorean Theorem on </math>\triangle{AOI} gives us AI = 3\sqrt{39} as we know that <math>AO</math> is 13.
+
We know that the area of <math>\triangle{ABC}</math> is equal to <math>\frac{abc}{4R}</math>, but is also equal to <math>\frac{a+b+c}{2}r</math>, where R is the circumcircle and r is the incircle. So, <math>abc = 156(a+b+c)</math>. Let's extend <math>AI</math> so it intersects the circumcircle of <math>\triangle{ABC}</math> at <math>P</math>. Something that we see is that <math>\triangle{AIO}</math> is congruent to <math>\triangle{PIO}</math>. Something else that we notice that since <math>AI</math> is the angle bisector of <math>\angle{A}</math>, <math>P</math> is the midpoint of arc <math>BC</math>. Now, let's try calculating <math>AI</math>. By Euler's Theorem, <math>OI^{2} = R^{2} - 2Rr</math> where R is the circumcircle and r is the incircle, so <math>OI = \sqrt{13}</math>. Using Pythagorean Theorem on <math>\triangle{AOI}</math> gives us <math>AI = 3\sqrt{39}</math> as we know that <math>AO</math> is 13.
  
However, since <math>\triangle{AOI}</math> is congruent to <math>\triangle{POI}</math>, <math>PI = 3\sqrt{39}</math>. Since we know that P is the midpoint of arc BC, we can apply the Incenter-Excenter Lemma to get that <math>BP = 3\sqrt{39}</math> and <math>CP = 3\sqrt{39}</math>. Now, we can use Ptolemey's Theorem on quadrilateral ABPC:
+
However, since <math>\triangle{AOI}</math> is congruent to <math>\triangle{POI}</math>, <math>PI = 3\sqrt{39}</math>. Since we know that <math>P</math> is the midpoint of arc <math>BC</math>, we can apply the Incenter-Excenter Lemma to get that <math>BP = 3\sqrt{39}</math> and <math>CP = 3\sqrt{39}</math>. Now, we can use Ptolemy's Theorem on quadrilateral ABPC:
  
 
<math>(b+c)(3\sqrt{39}) = a \times 6\sqrt{39}</math>
 
<math>(b+c)(3\sqrt{39}) = a \times 6\sqrt{39}</math>
Line 403: Line 402:
 
However, we know that <math>abc = 156(a+b+c)</math>, so we can solve for a! So, <math>abc - 156c = 156a + 156b</math>. Dividing gives us <math>a = \frac{156b + 156c}{bc - 156}</math>. Substituting and cancelling into our equation,
 
However, we know that <math>abc = 156(a+b+c)</math>, so we can solve for a! So, <math>abc - 156c = 156a + 156b</math>. Dividing gives us <math>a = \frac{156b + 156c}{bc - 156}</math>. Substituting and cancelling into our equation,
  
<math>b+c = 2\frac{156b+156c}{bc-156}.
+
<math>b+c = 2\frac{156b+156c}{bc-156}</math>.
  
Multiplying, </math>(b+c)(bc-156) = 2 * 156(b+c).<math>  
+
Multiplying, <math>(b+c)(bc-156) = 2 \times 156(b+c).</math>  
  
So, </math>(bc-156)<math> = 312. Our answer is 312 + 156 = </math>\boxed{468}$.
+
So, <math>(bc-156)</math> = 312. Our answer is 312 + 156 = <math>\boxed{468}</math>.
  
 
~aleyang
 
~aleyang
 +
 +
==Solution 10==
 +
We know by Euler's theorem <math>OI^2=R^2-2Rr.</math> Since <math>AO=R,</math> we have <math>AI=\sqrt{2Rr}.</math> Now, extend <math>AI</math> to meet <math>BC</math> at <math>A'</math> and the circumcircle of <math>\Delta ABC</math> at <math>L.</math> By the Incenter-Excenter lemma, <math>BL=CL=IL=r_a.</math> (Note that <math>OI \perp AL \rightarrow AI=IL=r_a\rightarrow r_a=\sqrt{2Rr}.</math>) Using Ptolemy in the cyclic quadrilateral <math>ABLC,</math> we have <math>c\cdot r_a+b\cdot r_a=2r_a\cdot a \iff \frac{b+c}{a}=2.</math> Also using the angle-bisector theorem we get, <math>\frac{c}{A'B}=\frac{b}{A'C}=\frac{b+c}{a}=2,</math> so call <math>c=2m, b=2n, A'B=m, A'C=n.</math> Since <math>\Delta AA'B \sim \Delta CA'L,</math> <math>\frac{AB}{r_a}=\frac{A'B}{A'L}\rightarrow LA'=\frac{r_a}{2}.</math> Thus, <math>AA'=\frac{3r_a}{2}</math> (as <math>AL=2r_a</math>), and <math>mn=AA'\cdot LA'=\frac{3r_a^2}{4}=\frac{3Rr}{2}.</math> In this problem, we want to find <math>4mn=6Rr,</math> yielding an answer of <math>\boxed{468}.</math>
 +
 +
~anduran
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 01:13, 29 September 2025

Problem

Let $\triangle$$ABC$ have incenter $I$, circumcenter $O$, inradius $6$, and circumradius $13$. Suppose that $\overline{IA} \perp \overline{OI}$. Find $AB \cdot AC$.

Video solution by grogg007

https://youtu.be/2SwjLBNsZXc

Solution 1 (Similar Triangles and PoP)

Start off by (of course) drawing a diagram! Let $I$ and $O$ be the incenter and circumcenters of triangle $ABC$, respectively. Furthermore, extend $AI$ to meet $BC$ at $L$ and the circumcircle of triangle $ABC$ at $D$.

[asy] size(300); import olympiad; real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26); pair A = (c/3,8.65*c/10); draw(circumcircle(A,B,C)); pair I=incenter(A,B,C); pair O=circumcenter(A,B,C); pair L=extension(A,I,C,B); dot(I^^O^^A^^B^^C^^D^^L); draw(A--L); draw(A--D); path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} draw(C--B--D--cycle); draw(A--C--B); draw(A--B); draw(B--I--C^^A--I); draw(incircle(A,B,C)); label("$B$",B,SW); label("$C$",C,SE); label("$A$",A,N); label("$D$",D,S); label("$I$",I,NW); label("$L$",L,SW); label("$O$",O,E); label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8)); label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8)); label("$\beta$",C,12*dir(midangle(B,C,I)),fontsize(8)); label("$\beta$",C,12*dir(midangle(I,C,A)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));  draw(I--O); draw(A--O); draw(rightanglemark(A,I,O)); [/asy]


We'll tackle the initial steps of the problem in two different manners, both leading us to the same final calculations.

Solution 1.1

Since $I$ is the incenter, $\angle BAL \cong \angle DAC$. Furthermore, $\angle ABC$ and $\angle ADC$ are both subtended by the same arc $AC$, so $\angle ABC \cong \angle ADC.$ Therefore by AA similarity, $\triangle ABL \sim \triangle ADC$. From this we can say that \[\frac{AB}{AD} = \frac{AL}{AC} \implies AB \cdot AC = AL \cdot AD\]

Since $AD$ is a chord of the circle and $OI$ is a perpendicular from the center to that chord, $OI$ must bisect $AD$. This can be seen by drawing $OD$ and recognizing that this creates two congruent right triangles. Therefore, \[AD = 2 \cdot ID \implies AB \cdot AC = 2 \cdot AL \cdot ID\]

We have successfully represented $AB \cdot AC$ in terms of $AL$ and $ID$. Solution 1.2 will explain an alternate method to get a similar relationship, and then we'll rejoin and finish off the solution.

Solution 1.2

$\angle ALB \cong \angle DLC$ by vertical angles and $\angle LBA \cong \angle CDA$ because both are subtended by arc $AC$. Thus $\triangle ABL \sim \triangle CDL$.

Thus \[\frac{AB}{CD} = \frac{AL}{CL} \implies AB = CD \cdot \frac{AL}{CL}\]

Symmetrically, we get $\triangle ALC \sim \triangle BLD$, so \[\frac{AC}{BD} = \frac{AL}{BL} \implies AC = BD \cdot \frac{AL}{BL}\]

Substituting, we get \[AB \cdot AC = CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL}\]

$\textbf{Lemma 1:}\quad$ $BD = CD = ID$

Proof:

We commence angle chasing: we know $\angle DBC \cong DAC = \gamma$. Therefore \[\angle IBD = \alpha + \gamma\]. Looking at triangle $ABI$, we see that $\angle IBA = \alpha$, and $\angle BAI = \gamma$. Therefore because the sum of the angles must be $180$, $\angle BIA = 180-\alpha - \gamma$. Now $AD$ is a straight line, so \[\angle BID = 180-\angle BIA = \alpha+\gamma\]. Since $\angle IBD = \angle BID$, triangle $IBD$ is isosceles and thus $ID = BD$.

A similar argument should suffice to show $CD = ID$ by symmetry, so thus $ID = BD = CD$.

Now we regroup and get \[CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL} = ID^2 \cdot \frac{AL^2}{BL \cdot CL}\]

Now note that $BL$ and $CL$ are part of the same chord in the circle, so we can use Power of a point to express their product differently. \[BL \cdot CL = AL \cdot LD \implies AB \cdot AC = ID^2 \cdot \frac{AL}{LD}\]

Solution 1 (Continued)

Now we have some sort of expression for $AB \cdot AC$ in terms of $ID$ and $AL$. Let's try to find $AL$ first.

Drop an altitude from $D$ to $BC$, $I$ to $AC$, and $I$ to $BC$:

[asy] size(300); import olympiad; real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0); pair A = (c/3,8.65*c/10); pair F = (2*c/3-0.14, 4-0.29); pair G = (c/2-0.68,0); draw(circumcircle(A,B,C)); pair I=incenter(A,B,C); pair O=circumcenter(A,B,C); pair L=extension(A,I,C,B); dot(I^^O^^A^^B^^C^^D^^L^^E^^F^^G); draw(A--L); draw(A--D); draw(D--E); draw(I--F); draw(I--G); path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} draw(C--B--D--cycle); draw(A--C--B); draw(A--B); draw(B--I--C^^A--I); draw(incircle(A,B,C)); label("$B$",B,SW); label("$C$",C,SE); label("$A$",A,N); label("$D$",D,S); label("$I$",I,NW); label("$L$",L,SW); label("$O$",O,E); label("$E$",E,N); label("$F$",F,NE); label("$G$",G,SW); label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8)); label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8)); label("$\beta$",C,12*dir(midangle(B,C,I)),fontsize(8)); label("$\beta$",C,12*dir(midangle(I,C,A)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));   draw(I--O); draw(A--O); draw(rightanglemark(A,I,O)); draw(rightanglemark(B,E,D)); draw(rightanglemark(I,F,A)); draw(rightanglemark(I,G,L)); [/asy]

Since $\angle DBE \cong \angle IAF$ and $\angle BED \cong \angle IFA$, $\triangle BDE \sim \triangle AIF$.

Furthermore, we know $BD = ID$ and $AI = ID$, so $BD = AI$. Since we have two right similar triangles and the corresponding sides are equal, these two triangles are actually congruent: this implies that $DE = IF = 6$ since $IF$ is the inradius.

Now notice that $\triangle IGL \sim \triangle DEL$ because of equal vertical angles and right angles. Furthermore, $IG$ is the inradius so it's length is $6$, which equals the length of $DE$. Therefore these two triangles are congruent, so $IL = DL$.

Since $IL+DL = ID$, $ID = 2 \cdot IL$. Furthermore, $AL = AI + IL = ID + IL = 3 \cdot IL$.

We can now plug back into our initial equations for $AB \cdot AC$:

From $1.1$, $AB \cdot AC = 2 \cdot AL \cdot ID = 2 \cdot 3 \cdot IL \cdot 2 \cdot IL$

\[\implies AB \cdot AC = 3 \cdot (2 \cdot IL) \cdot (2 \cdot IL) = 3 \cdot ID^2\]

Alternatively, from $1.2$, $AB \cdot AC = ID^2 \cdot \frac{AL}{DL}$ \[\implies AB \cdot AC = ID^2  \cdot \frac{3 \cdot IL}{IL} = 3 \cdot ID^2\]

Now all we need to do is find $ID$.

The problem now becomes very simple if one knows Euler's Formula for the distance between the incenter and the circumcenter of a triangle. This formula states that $OI^2 = R(R-2r)$, where $R$ is the circumradius and $r$ is the inradius. We will prove this formula first, but if you already know the proof, skip this part.

Theorem: in any triangle, let $d$ be the distance from the circumcenter to the incenter of the triangle. Then $d^2 = R \cdot (R-2r)$, where $R$ is the circumradius of the triangle and $r$ is the inradius of the triangle.

Proof:

Construct the following diagram:


[asy] size(300); import olympiad; real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0); pair A = (c/3,8.65*c/10); pair F = (2*c/3-0.14, 4-0.29); pair G = (c/2-0.68,0); draw(circumcircle(A,B,C)); pair I=incenter(A,B,C); pair O=circumcenter(A,B,C); pair L=extension(A,I,C,B); dot(I^^O^^A^^B^^C^^D^^L^^F); draw(A--L); draw(A--D); draw(I--F); path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} draw(C--B--D--cycle); draw(A--C--B); draw(A--B); draw(A--I); draw(incircle(A,B,C)); label("$B$",B,SW); label("$C$",C,SE); label("$A$",A,N); label("$D$",D,S); label("$I$",I,NW); label("$L$",L,SW); label("$O$",O,S); label("$F$",F,NE); label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));  pair H = (10*c/8-1.46,2*c/3-1.85), J = (-0.55,1.4); dot(H^^J); label("$H$", H, E); label("$J$", J, W);   draw(I--O); draw(I--H); draw(I--J); draw(rightanglemark(I,F,A)); [/asy]


Let $OI = d$, $OH = R$, $IF = r$. By the Power of a Point, $IH \cdot IJ = AI \cdot ID$. $IH = R+d$ and $IJ = R-d$, so \[(R+d) \cdot (R-d) = AI \cdot ID = AI \cdot CD\]

Now consider $\triangle ACD$. Since all three points lie on the circumcircle of $\triangle ABC$, the two triangles have the same circumcircle. Thus we can apply law of sines and we get $\frac{CD}{\sin(\angle DAC)} = 2R$. This implies

\[(R+d)\cdot (R-d) = AI \cdot 2R \cdot \sin(\angle DAC)\]

Also, $\sin(\angle DAC)) = \sin(\angle IAF))$, and $\triangle IAF$ is right. Therefore \[\sin(\angle IAF) = \frac{IF}{AI} = \frac{r}{AI}\]

Plugging in, we have

\[(R+d)\cdot (R-d) = AI \cdot 2R \cdot \frac{r}{AI} = 2R \cdot r\]

Thus \[R^2-d^2 = 2R \cdot r \implies d^2 = R \cdot (R-2r)\]



Now we can finish up our solution. We know that $AB \cdot AC = 3 \cdot ID^2$. Since $ID = AI$, $AB \cdot AC = 3 \cdot AI^2$. Since $\triangle AOI$ is right, we can apply the pythagorean theorem: $AI^2 = AO^2-OI^2 = 13^2-OI^2$.

Plugging in from Euler's formula, $OI^2 = 13 \cdot (13 - 2 \cdot 6) = 13$.

Thus $AI^2 = 169-13 = 156$.

Finally $AB \cdot AC = 3 \cdot AI^2 = 3 \cdot 156 = \textbf{468}$.


~KingRavi

Solution 2 (Excenters)

By Euler's formula $OI^{2}=R(R-2r)$, we have $OI^{2}=13(13-12)=13$. Thus, by the Pythagorean theorem, $AI^{2}=13^{2}-13=156$. Let $AI\cap(ABC)=M$; notice $\triangle AOM$ is isosceles and $\overline{OI}\perp\overline{AM}$ which is enough to imply that $I$ is the midpoint of $\overline{AM}$, and $M$ itself is the midpoint of $II_{a}$ where $I_{a}$ is the $A$-excenter of $\triangle ABC$. Therefore, $AI=IM=MI_{a}=\sqrt{156}$ and \[AB\cdot AC=AI\cdot AI_{a}=3\cdot AI^{2}=\boxed{468}.\]

Note that this problem is extremely similar to 2019 CIME I/14.


Solution 3

Denote $AB=a, AC=b, BC=c$. By the given condition, $\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6$, where $A$ is the area of $\triangle{ABC}$.

Moreover, since $OI\bot AI$, the second intersection of the line $AI$ and $(ABC)$ is the reflection of $A$ about $I$, denote that as $D$. By the incenter-excenter lemma with Ptolemy's Theorem, $DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c$.

Thus, we have $\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c$. Now, we have $\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}$

~Bluesoul

Solution 4 (Trig)

Denote by $R$ and $r$ the circumradius and inradius, respectively.

First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]

Second, because $AI \perp IO$, \begin{align*} AI & = AO \cos \angle IAO \\ & = AO \cos \left( 90^\circ - C - \frac{A}{2} \right) \\ & = AO \sin \left( C + \frac{A}{2} \right) \\ & = R \sin \left( C + \frac{180^\circ - B - C}{2} \right) \\ & = R \cos \frac{B - C}{2} . \end{align*}

Thus, \begin{align*} r & = AI \sin \frac{A}{2} \\ & = R \sin \frac{A}{2} \cos \frac{B-C}{2} \hspace{1cm} (2) \end{align*}

Taking $(1) - (2)$, we get \[4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} .\]

We have \begin{align*} 2 \sin \frac{B}{2} \sin \frac{C}{2} & = - \cos \frac{B+C}{2} + \cos \frac{B-C}{2} . \end{align*}

Plugging this into the above equation, we get \[\cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3)\]

Now, we analyze Equation (2). We have \begin{align*} \frac{r}{R} & = \sin \frac{A}{2} \cos \frac{B-C}{2} \\ & = \sin \frac{180^\circ - B - C}{2} \cos \frac{B-C}{2} \\ & = \cos \frac{B+C}{2} \cos \frac{B-C}{2} \hspace{1cm} (4) \end{align*}

Solving Equations (3) and (4), we get \[\cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5)\]

Now, we compute $AB \cdot AC$. We have \begin{align*} AB \cdot AC & = 2R \sin C \cdot 2R \sin B \\ & = 2 R^2 \left( - \cos \left( B + C \right) + \cos \left( B - C \right) \right) \\ & = 2 R^2 \left( - \left( 2 \left( \cos \frac{B+C}{2} \right)^2 - 1 \right) + \left( 2 \left( \cos \frac{B-C}{2} \right)^2 - 1 \right) \right) \\ & = 6 R r \\ & = \boxed{\textbf{(468) }} \end{align*} where the first equality follows from the law of sines, the fourth equality follows from (5).


~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 5 (Trig)

2024AIMEIIProblem10.png


Firstly, we can construct the triangle $\triangle ABC$ by drawing the circumcirlce (centered at $O$ with radius $R = OA = 13$) and incircle (centered at $I$ with radius $r = 6$). Next, from $A$, construct tangent lines to the incircle meeting the circumcirlce at point $B$ and $C$, say, as shown in the diagram. By Euler's theorem (relating the distance between $O$ and $I$ to the circumradius and inradius), we have \[OI = \sqrt{R^2 - 2rR} = \sqrt{13}.\] This leads to \[AI = \sqrt{R^2 - OI^2} = \sqrt{156}.\] Let $P$ be the point of tangency where the incircle meets the side $\overline{AC}$. Now we denote \[\theta \coloneqq \angle BAI = \angle IAP \qquad \text{and} \qquad \phi \coloneqq \angle OAI.\] Notice that $\angle BAO = \angle BAI - \angle OAI = \theta - \phi$. Finally, the crux move is to recognize \[AB = 2R \cos(\theta - \phi) \qquad \text{and} \qquad AC = 2R \cos(\theta + \phi)\] since $O$ is the circumcenter. Then multiply these two expressions and apply the compound-angle formula to get \begin{aligned} AB \cdot AC &= 4R^2 \cos(\theta - \phi) \cos(\theta + \phi) \\[0.3em] &= 4R^2\left( \cos^2\theta \cos^2\phi - \sin^2\theta \sin^2\phi \right) \\[0.3em] &= 4\cos^2\theta(\underbrace{R\cos\phi}_{AI \, = \, \sqrt{156}})^2 - 4\sin^2\theta(\underbrace{R\sin\phi}_{OI \, = \, \sqrt{13}})^2 \\[0.3em] &= 52 (12\cos^2\theta - \sin^2 \theta) \\[0.3em] AB \cdot AC &= 52 (12 - 13\sin^2\theta), \end{aligned} where in the last equality, we make use of the substitution $\cos^2\theta = 1 - \sin^2\theta$. Looking at $\triangle AIP$, we learn that $\sin \theta = \frac{r}{AI} = \frac{6}{\sqrt{156}}$ which means $\sin^2 \theta = \frac{3}{13}$. Hence we have \[AB \cdot AC = 52\left( 12 - 13 \cdot \tfrac{3}{13} \right) = 52 \cdot 9 = \boxed{468}.\] This completes the solution

-- VensL.

Solution 6 (Close to Solution 3)

2024 AIME II 10.png

Denote $E = \odot ABC \cap AI, AB = c, AC = b, BC=a, r$ is inradius. \[AO = EO = R \implies AI = EI.\] It is known that $\frac {AI}{EI} = \frac {b+c}{a} – 1 = 1 \implies b + c = 2a.$

\[[ABC] =\frac{ (a+b+c) r}{2} = \frac {3ar}{2} = \frac {abc}{4R} \implies bc = 6Rr = \boxed{468}.\] vladimir.shelomovskii@gmail.com, vvsss

Solution 7

Call side $BC = a$, and similarly label the other sides. Note that ${OI}^2 = R^2 - 2Rr$. Also note that $AO = R$, so by the right angle, $AI = \sqrt{2Rr}$. However, we can double Angle Bisector theorem. The length of the angle bisector from A is $\sqrt{(bc)(1 - \frac{a^2}{(b+c)^2})}$. As a direct result, the length AI simplifies down to $\frac{\sqrt{(bc)(b+c-a)}}{\sqrt{{a+b+c}}}$.

Draw the incircle and call the tangent to side AB F. Then, $AF = \frac{b+c-a}{2}$. But this length, by Pythagorean, is $\sqrt{120}$, so $b+c-a = 2\sqrt{120}$.

Also note that the area of the triangle is $[ABC] = \frac{abc}{52}$, by $\frac{abc}{4S} = R$. By the incircle, we know that $\sin{\frac{A}{2}} = \frac{6}{\sqrt{156}}$, and similarly, $\cos{\frac{A}{2}} = \frac{\sqrt{120}}{\sqrt{156}}$. By double-angle, $\sin A = \frac{\sqrt{120}}{13}$. But the area of the triangle $[ABC]$ is simply $\frac{1}{2}bc \sin A$, which is also $2\sqrt{120}bc$. But we know this is $abc$ from above, so $a = 2\sqrt{120}$. As a direct result, $a+b+c =  6\sqrt{120}$.

Apply this to the formula $\frac{\sqrt{(bc)(b+c-a)}}{\sqrt{a+b+c}}$ listed above to get $2Rr = 156 = \frac{bc}{3}$, so $bc = 468$. We're done. - sepehr2010

Solution 8

Let the intersection of the $A$-angle bisector and the circumcircle be $M$, and denote the $A$-excenter as $I_A$. Denote the tangent to the incircle from $AC$ as $E$ and the tangent to the excircle from $AC$ as $E_A$.

Notice that our perpendicular condition implies $AI = IM$, and Incenter-Excenter gives $IM = MI_A$. Thus we have $AI_A = 3AI$. From similar triangles we get $3(s-a) = 3AE = AE_A = s$. This implies $a = \frac23 S$.

Using areas we have that $\frac{abc}{4R} = rs$. Substituting gives $\frac{sbc}{6R} = rs \implies bc = 6Rr = \boxed{468}$ and we're done. - thoom

Solution 9

We know that the area of $\triangle{ABC}$ is equal to $\frac{abc}{4R}$, but is also equal to $\frac{a+b+c}{2}r$, where R is the circumcircle and r is the incircle. So, $abc = 156(a+b+c)$. Let's extend $AI$ so it intersects the circumcircle of $\triangle{ABC}$ at $P$. Something that we see is that $\triangle{AIO}$ is congruent to $\triangle{PIO}$. Something else that we notice that since $AI$ is the angle bisector of $\angle{A}$, $P$ is the midpoint of arc $BC$. Now, let's try calculating $AI$. By Euler's Theorem, $OI^{2} = R^{2} - 2Rr$ where R is the circumcircle and r is the incircle, so $OI = \sqrt{13}$. Using Pythagorean Theorem on $\triangle{AOI}$ gives us $AI = 3\sqrt{39}$ as we know that $AO$ is 13.

However, since $\triangle{AOI}$ is congruent to $\triangle{POI}$, $PI = 3\sqrt{39}$. Since we know that $P$ is the midpoint of arc $BC$, we can apply the Incenter-Excenter Lemma to get that $BP = 3\sqrt{39}$ and $CP = 3\sqrt{39}$. Now, we can use Ptolemy's Theorem on quadrilateral ABPC:

$(b+c)(3\sqrt{39}) = a \times 6\sqrt{39}$

However, we know that $abc = 156(a+b+c)$, so we can solve for a! So, $abc - 156c = 156a + 156b$. Dividing gives us $a = \frac{156b + 156c}{bc - 156}$. Substituting and cancelling into our equation,

$b+c = 2\frac{156b+156c}{bc-156}$.

Multiplying, $(b+c)(bc-156) = 2 \times 156(b+c).$

So, $(bc-156)$ = 312. Our answer is 312 + 156 = $\boxed{468}$.

~aleyang

Solution 10

We know by Euler's theorem $OI^2=R^2-2Rr.$ Since $AO=R,$ we have $AI=\sqrt{2Rr}.$ Now, extend $AI$ to meet $BC$ at $A'$ and the circumcircle of $\Delta ABC$ at $L.$ By the Incenter-Excenter lemma, $BL=CL=IL=r_a.$ (Note that $OI \perp AL \rightarrow AI=IL=r_a\rightarrow r_a=\sqrt{2Rr}.$) Using Ptolemy in the cyclic quadrilateral $ABLC,$ we have $c\cdot r_a+b\cdot r_a=2r_a\cdot a \iff \frac{b+c}{a}=2.$ Also using the angle-bisector theorem we get, $\frac{c}{A'B}=\frac{b}{A'C}=\frac{b+c}{a}=2,$ so call $c=2m, b=2n, A'B=m, A'C=n.$ Since $\Delta AA'B \sim \Delta CA'L,$ $\frac{AB}{r_a}=\frac{A'B}{A'L}\rightarrow LA'=\frac{r_a}{2}.$ Thus, $AA'=\frac{3r_a}{2}$ (as $AL=2r_a$), and $mn=AA'\cdot LA'=\frac{3r_a^2}{4}=\frac{3Rr}{2}.$ In this problem, we want to find $4mn=6Rr,$ yielding an answer of $\boxed{468}.$

~anduran

Video Solution

https://youtu.be/_zxBvojcAQ4

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://www.youtube.com/watch?v=pPBPfpo12j4

~MathProblemSolvingSkills.com

See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png