During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "Proofs to Some Number Theory Facts"

(Created page with "There are some very useful facts in Number Theory that have no names. ==Fact 1== ===Statement=== ===Proof=== ===Uses=== ===Examples=== ===Problems=== ==Fact 2==...")
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
There are some very useful facts in [[Number Theory]] that have no names.  
+
There are some very useful facts in [[Number Theory]] that have no names. If you have a fact, feel free to add it to this page.
  
 
==Fact 1==
 
==Fact 1==
  
 
===Statement===
 
===Statement===
 +
For a prime number <math>p</math>, we have
  
===Proof===
+
<cmath>\dbinom{2p}{p} \equiv 2 \pmod {p}</cmath>
 
 
===Uses===
 
 
 
===Examples===
 
 
 
===Problems===
 
 
 
 
 
==Fact 2==
 
 
 
===Statement===
 
 
 
===Proof===
 
 
 
===Uses===
 
 
 
===Examples===
 
 
 
===Problems===
 
 
 
 
 
==Fact 3==
 
 
 
===Statement===
 
 
 
===Proof===
 
 
 
===Uses===
 
 
 
===Examples===
 
 
 
===Problems===
 
 
 
 
 
==Fact 4==
 
 
 
===Statement===
 
 
 
===Proof===
 
 
 
===Uses===
 
 
 
===Examples===
 
 
 
===Problems===
 
 
 
 
 
==Fact 5==
 
 
 
===Statement===
 
 
 
===Proof===
 
 
 
===Uses===
 
 
 
===Examples===
 
 
 
===Problems===
 
 
 
 
 
==Fact 6==
 
 
 
===Statement===
 
 
 
===Proof===
 
 
 
===Uses===
 
 
 
===Examples===
 
 
 
===Problems===
 
 
 
 
 
==Fact 7==
 
 
 
===Statement===
 
  
 
===Proof===
 
===Proof===
 +
We have the congruence
  
===Uses===
+
<cmath>(p-1)! \cdot \dbinom{2p}{p} = 2 \cdot (2p-1) \cdot (2p-2) \cdot \dots \cdot (p+1) \equiv 2 \cdot (p-1)! \equiv -2 \pmod {p}</cmath>
  
===Examples===
+
<cmath>\implies \dbinom{2p}{p} \equiv 2 \pmod {p}</cmath>
  
===Problems===
 
  
==See Also==
+
== See Also ==
  
*[[Number Theory]]
+
* [[Number Theory]]
  
 
{{stub}}
 
{{stub}}

Latest revision as of 13:47, 16 May 2025

There are some very useful facts in Number Theory that have no names. If you have a fact, feel free to add it to this page.

Fact 1

Statement

For a prime number $p$, we have

\[\dbinom{2p}{p} \equiv 2 \pmod {p}\]

Proof

We have the congruence

\[(p-1)! \cdot \dbinom{2p}{p} = 2 \cdot (2p-1) \cdot (2p-2) \cdot \dots \cdot (p+1) \equiv 2 \cdot (p-1)! \equiv -2 \pmod {p}\]

\[\implies \dbinom{2p}{p} \equiv 2 \pmod {p}\]


See Also

This article is a stub. Help us out by expanding it.