Difference between revisions of "2025 AIME II Problems/Problem 2"
(→Solution 1) |
(→Solution 1) |
||
(17 intermediate revisions by 7 users not shown) | |||
Line 3: | Line 3: | ||
==Solution 1== | ==Solution 1== | ||
− | <math>\frac{3(n+3)(n^{2}+9) }{n+2} \in Z</math> | + | <math>\frac{3(n+3)(n^{2}+9) }{n+2} \in \mathbb{Z}</math> |
− | <math>\Rightarrow \frac{3(n+2+1)(n^{2}+9) }{n+2} \in Z</math> | + | <math>\Rightarrow \frac{3(n+2+1)(n^{2}+9) }{n+2} \in \mathbb{Z}</math> |
− | <math>\Rightarrow \frac{3(n+2)(n^{2}+9) +3(n^{2}+9)}{n+2} \in Z</math> | + | <math>\Rightarrow \frac{3(n+2)(n^{2}+9) +3(n^{2}+9)}{n+2} \in \mathbb{Z}</math> |
− | <math>\Rightarrow 3(n^{2}+9)+\frac{3(n^{2}+9)}{n+2} \in Z</math> | + | <math>\Rightarrow 3(n^{2}+9)+\frac{3(n^{2}+9)}{n+2} \in \mathbb{Z}</math> |
− | <math>\Rightarrow \frac{3(n^{2}-4+13)}{n+2} \in Z</math> | + | <math>\Rightarrow \frac{3(n^{2}-4+13)}{n+2} \in \mathbb{Z}</math> |
− | <math>\Rightarrow \frac{3(n+2)(n-2)+39}{n+2} \in Z</math> | + | <math>\Rightarrow \frac{3(n+2)(n-2)+39}{n+2} \in \mathbb{Z}</math> |
− | <math>\Rightarrow 3(n-2)+\frac{39}{n+2} \in Z</math> | + | <math>\Rightarrow 3(n-2)+\frac{39}{n+2} \in \mathbb{Z}</math> |
− | + | <math>\Rightarrow \frac{39}{n+2} \in \mathbb{Z}</math> | |
− | + | Since <math>n + 2</math> is positive, the positive factors of <math>39</math> are <math>1</math>, <math>3</math>, <math>13</math>, and <math>39</math>. | |
− | + | Therefore, <math>n = -1</math>, <math>1</math>, <math>11</math> and <math>37</math>. | |
− | 1 | + | Since <math>n</math> is positive, <math>n = 1</math>, <math>11</math> and <math>37</math>. |
− | + | <math>1 + 11 + 37 = \framebox{049}</math> is the correct answer | |
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Tonyttian Tonyttian] | ||
+ | |||
+ | ~ Edited by [https://artofproblemsolving.com/wiki/index.php/User:Aoum aoum] | ||
+ | |||
+ | ==Solution 2== | ||
+ | We observe that <math>n+2</math> and <math>n+3</math> share no common prime factor, so <math>n+2</math> divides <math>3(n+3)(n^2+9)</math> if and only if <math>n+2</math> divides <math>3(n^2+9)</math>. | ||
+ | |||
+ | By dividing <math>\frac{3(n^2+9)}{n+2}</math> either with long division or synthetic division, one obtains <math>3n-6+\frac{39}{n+2}</math>. This quantity is an integer if and only if <math>\frac{39}{n+2}</math> is an integer, so <math>n+2</math> must be a factor of 39. As in Solution 1, <math>n \in \{1,11,37\}</math> and the sum is <math>\boxed{049}</math>. | ||
+ | |||
+ | ~scrabbler94 | ||
+ | |||
+ | ==Solution 3 (modular arithmetic)== | ||
+ | Let's express the right-hand expression in terms of mod <math>n + 2</math>. | ||
+ | |||
+ | <math>3 \equiv 3 \pmod{n + 2}</math>. | ||
+ | |||
+ | <math>n + 3 \equiv 1 \pmod{n + 2}</math>. | ||
+ | |||
+ | <math>n^2 + 9 \equiv 13 \pmod{n + 2}</math> since <math>n^2 - 4 \equiv 0 \pmod{n + 2}</math> with a quotient <math>n - 2</math> | ||
+ | |||
+ | <math>3(n + 3)(n^2 + 9) \equiv 3(1)(13) \pmod{n + 2} \equiv 39 \pmod{n + 2}</math> | ||
+ | |||
+ | This means <math>39 = (n + 2)k \pmod{n + 2}</math> where k is some integer. | ||
+ | |||
+ | Note that <math>n + 2</math> is positive, meaning <math>n + 2 \geq 3</math>. | ||
+ | |||
+ | <math>n + 2</math> is one of the factors of 39, so <math>n + 2 = 3, 13,</math> or <math>39</math>, so <math>n = 1, 11,</math> or <math>37</math>. | ||
+ | |||
+ | The sum of all possible <math>n</math> is <math>1 + 11 + 37 = \boxed{049}</math>. | ||
+ | |||
+ | ~Sohcahtoa157 | ||
+ | |||
+ | |||
+ | ==Video Solution by Mathletes Corner== | ||
+ | |||
+ | https://www.youtube.com/watch?v=WYyDe_VyvvQ | ||
+ | |||
+ | ~GP102 | ||
+ | |||
+ | |||
+ | ==See also== | ||
+ | {{AIME box|year=2025|num-b=1|num-a=3|n=II}} | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 09:37, 20 May 2025
Contents
Problem
Find the sum of all positive integers such that
divides the product
.
Solution 1
Since is positive, the positive factors of
are
,
,
, and
.
Therefore, ,
,
and
.
Since is positive,
,
and
.
is the correct answer
~ Edited by aoum
Solution 2
We observe that and
share no common prime factor, so
divides
if and only if
divides
.
By dividing either with long division or synthetic division, one obtains
. This quantity is an integer if and only if
is an integer, so
must be a factor of 39. As in Solution 1,
and the sum is
.
~scrabbler94
Solution 3 (modular arithmetic)
Let's express the right-hand expression in terms of mod .
.
.
since
with a quotient
This means where k is some integer.
Note that is positive, meaning
.
is one of the factors of 39, so
or
, so
or
.
The sum of all possible is
.
~Sohcahtoa157
Video Solution by Mathletes Corner
https://www.youtube.com/watch?v=WYyDe_VyvvQ
~GP102
See also
2025 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.