Difference between revisions of "2005 AMC 8 Problems/Problem 13"
(Replaced content with "heyyyyyy") (Tag: Replaced) |
(Undo revision 248108 by Daniel.en.qin (talk)) (Tag: Undo) |
||
Line 1: | Line 1: | ||
− | + | == Problem == | |
+ | The area of polygon <math> ABCDEF</math> is 52 with <math> AB=8</math>, <math>BC=9</math> and <math>FA=5</math>. What is <math> DE+EF</math>? | ||
+ | |||
+ | <asy> | ||
+ | pair a=(0,9), b=(8,9), c=(8,0), d=(4,0), e=(4,4), f=(0,4); | ||
+ | draw(a--b--c--d--e--f--cycle); | ||
+ | draw(shift(0,-.25)*a--shift(.25,-.25)*a--shift(.25,0)*a); | ||
+ | draw(shift(-.25,0)*b--shift(-.25,-.25)*b--shift(0,-.25)*b); | ||
+ | draw(shift(-.25,0)*c--shift(-.25,.25)*c--shift(0,.25)*c); | ||
+ | draw(shift(.25,0)*d--shift(.25,.25)*d--shift(0,.25)*d); | ||
+ | draw(shift(.25,0)*f--shift(.25,.25)*f--shift(0,.25)*f); | ||
+ | label("$A$", a, NW); | ||
+ | label("$B$", b, NE); | ||
+ | label("$C$", c, SE); | ||
+ | label("$D$", d, SW); | ||
+ | label("$E$", e, SW); | ||
+ | label("$F$", f, SW); | ||
+ | label("5", (0,6.5), W); | ||
+ | label("8", (4,9), N); | ||
+ | label("9", (8, 4.5), E); | ||
+ | </asy> | ||
+ | |||
+ | <math> \textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11 </math> | ||
+ | |||
+ | == Solution == | ||
+ | Notice that <math>AF + DE = BC</math>, so <math>DE=4</math>. Let <math>O</math> be the intersection of the extensions of <math>AF</math> and <math>DC</math>, which makes rectangle <math>ABCO</math>. The area of the polygon is the area of <math>FEDO</math> subtracted from the area of <math>ABCO</math>. | ||
+ | |||
+ | <cmath>\text{Area} = 52 = 8 \cdot 9- EF \cdot 4</cmath> | ||
+ | |||
+ | Solving for the unknown, <math>EF=5</math>, therefore <math>DE+EF=4+5=\boxed{\textbf{(C)}\ 9}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | Similar to solution 1, <math>AF + DE = BC</math>, so <math>DE=4</math>. Split the polygon into two rectangles by extending the <math>DE</math> so it intersects <math>AB</math>. Let's say the length of <math>FE</math> is equal to <math>x</math>. We can form the equation: <cmath>5x + 9(8-x) = 52</cmath>. We see that <math>x = 5</math>, so we can add <math>5 + 4 = \boxed{\textbf{(C)}\ 9}</math>. | ||
+ | - ArjunBhumula | ||
+ | |||
+ | ==Video Solution by OmegaLearn== | ||
+ | https://youtu.be/abSgjn4Qs34?t=1908 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
+ | |||
+ | == See Also == | ||
+ | {{AMC8 box|year=2005|num-b=12|num-a=14}} | ||
+ | {{MAA Notice}} |
Latest revision as of 17:37, 5 May 2025
Problem
The area of polygon is 52 with
,
and
. What is
?
Solution
Notice that , so
. Let
be the intersection of the extensions of
and
, which makes rectangle
. The area of the polygon is the area of
subtracted from the area of
.
Solving for the unknown, , therefore
.
Solution 2
Similar to solution 1, , so
. Split the polygon into two rectangles by extending the
so it intersects
. Let's say the length of
is equal to
. We can form the equation:
. We see that
, so we can add
.
- ArjunBhumula
Video Solution by OmegaLearn
https://youtu.be/abSgjn4Qs34?t=1908
~ pi_is_3.14
See Also
2005 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.