Difference between revisions of "2024 AMC 10A Problems/Problem 5"

(Video Solution by Central Valley Math Circle)
 
(2 intermediate revisions by the same user not shown)
Line 64: Line 64:
 
https://youtu.be/uhpWASWW2ns
 
https://youtu.be/uhpWASWW2ns
  
==See also==
+
==Video solution by TheNeuralMathAcademy==
{{AMC10 box|year=2024|ab=A|num-b=4|num-a=6}}
+
https://www.youtube.com/watch?v=4b_YLnyegtw&t=782s
{{AMC12 box|year=2024|ab=A|num-b=3|num-a=5}}
+
 
 +
==See Also==
 +
{{AMC10 box|year=2024|ab=A|before=[[2023 AMC 10B Problems]]|after=[[2024 AMC 10B Problems]]}}
 +
* [[AMC 10]]
 +
* [[AMC 10 Problems and Solutions]]
 +
* [[Mathematics competitions]]
 +
* [[Mathematics competition resources]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 17:15, 18 August 2025

The following problem is from both the 2024 AMC 10A #5 and 2024 AMC 12A #4, so both problems redirect to this page.

Problem

What is the least value of $n$ such that $n!$ is a multiple of $2024$?

$\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253$

Solution

Note that $2024=2^3\cdot11\cdot23$ in the prime factorization. Since $23!$ is a multiple of $2^3, 11,$ and $23,$ we conclude that $23!$ is a multiple of $2024.$ Therefore, we have $n=\boxed{\textbf{(D) } 23}.$

Remark

Memorizing the prime factorization of the current year is useful for the AMC 8/10/12 Exams.

~MRENTHUSIASM

Remark

Note that $2024$ is $2025 -1$, which is $45^2 -1 = (45+1)(45-1) = 46\cdot44$.

~WISETIGERJ2

Video Solution by Central Valley Math Circle

https://youtu.be/Hc5DxRT-DOU

~mr_mathman

Video Solution

https://youtu.be/l3VrUsZkv8I

Video Solution by Math from my desk

https://www.youtube.com/watch?v=fAitluI5SoY&t=3s

Video Solution (⚡️ 1 min solve ⚡️)

https://youtu.be/FD6rV3wGQ74

~Education, the Study of Everything

Video Solution by Pi Academy

https://youtu.be/GPoTfGAf8bc?si=JYDhLVzfHUbXa3DW

Video Solution by Daily Dose of Math

https://youtu.be/DXDJUCVX3yU

~Thesmartgreekmathdude

Video Solution 1 by Power Solve

https://youtu.be/j-37jvqzhrg?si=qwyiAvKLbySyDR7D&t=529

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=6SQ74nt3ynw

Video Solution by TheBeautyofMath

For AMC 10: https://youtu.be/uKXSZyrIOeU?t=1168

For AMC 12: https://youtu.be/zaswZfIEibA?t=984

~IceMatrix

Video Solution by Dr. David

https://youtu.be/uhpWASWW2ns

Video solution by TheNeuralMathAcademy

https://www.youtube.com/watch?v=4b_YLnyegtw&t=782s

See Also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2023 AMC 10B Problems
Followed by
2024 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png