|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | {{delete|page was moved}} |
− | The number of faces (<math>F</math>), vertices (<math>V</math>), and edges (<math>E</math>) of a polyhedron are related by the equation <math>F + V - E = 2</math>. If a polyhedron has <math>6</math> faces and <math>8</math> vertices, how many edges does it have?
| |
− | | |
− | <math> \text{ (A) }\ 12 \qquad\text{ (B) }\ 14 \qquad\text{ (C) }\ 16 \qquad\text{ (D) }\ 18 \qquad\text{ (E) }\ 10 </math>
| |
− | ==Solution 1==
| |
− | We can use the equation provided in the problem, and plug in <math>6</math> for <math>F</math>, and <math>8</math> for <math>V</math>:
| |
− | | |
− | <math>6 + 8 - E = 2</math>
| |
− | | |
− | We can combine <math>6</math> and <math>8</math> to get:
| |
− | | |
− | <math>14 - E = 2</math>
| |
− | | |
− | Adding <math>E</math> to both sides, we get:
| |
− | | |
− | <math>E + 2 = 14</math>
| |
− | | |
− | Subtracting <math>2</math> from both sides of the equation, we get:
| |
− | | |
− | <math>E = \boxed {\textbf {(A) } 12}</math>
| |
− | | |
− | ~anabel.disher
| |
− | ==Solution 2==
| |
− | We can remember that a rectangular prism has <math>6</math> faces, <math>8</math> vertices, and <math>\boxed {\textbf {(A) } 12}</math> edges, without doing any calculation.
| |
− | | |
− | ~anabel.disher
| |