Difference between revisions of "1991 AHSME Problems/Problem 30"
Growingdaisy (talk | contribs) (→Solution 2 (PIE)) |
Growingdaisy (talk | contribs) (→Solution 2 (PIE)) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 19: | Line 19: | ||
Because <math>|C|</math> and <math>|A \cup B \cup C|</math> are integers, <math>|C|=101</math> and <math>|A \cup B \cup C| = 102.</math> | Because <math>|C|</math> and <math>|A \cup B \cup C|</math> are integers, <math>|C|=101</math> and <math>|A \cup B \cup C| = 102.</math> | ||
+ | |||
By the [[Principle of Inclusion-Exclusion]], <math>|A \cup B| = |A| + |B| - |A \cap B| = 200 - |A \cap B|.</math> | By the [[Principle of Inclusion-Exclusion]], <math>|A \cup B| = |A| + |B| - |A \cap B| = 200 - |A \cap B|.</math> | ||
Since <math>|A|=|B| \le |A \cup B| \le |A \cup B \cup C|</math>, we know <math>100 \le |A \cup B| \le 102</math>, so <math>98 \le |A \cap B| \le 100.</math> | Since <math>|A|=|B| \le |A \cup B| \le |A \cup B \cup C|</math>, we know <math>100 \le |A \cup B| \le 102</math>, so <math>98 \le |A \cap B| \le 100.</math> | ||
+ | |||
By the [[Principle of Inclusion-Exclusion]], <math>|A \cup C| = |A| + |C| - |A \cap C| = 201 - |A \cap C|.</math> | By the [[Principle of Inclusion-Exclusion]], <math>|A \cup C| = |A| + |C| - |A \cap C| = 201 - |A \cap C|.</math> | ||
Since <math>|C| \le |A \cup C| \le |A \cup B \cup C|</math>, we know <math>101 \le |A \cup C| \le 102</math>, so <math>99 \le |A \cap C| \le 100.</math> | Since <math>|C| \le |A \cup C| \le |A \cup B \cup C|</math>, we know <math>101 \le |A \cup C| \le 102</math>, so <math>99 \le |A \cap C| \le 100.</math> | ||
+ | |||
By the [[Principle of Inclusion-Exclusion]], <math>|B \cup C| = |B| + |C| - |B \cap C| = 201 - |B \cap C|.</math> | By the [[Principle of Inclusion-Exclusion]], <math>|B \cup C| = |B| + |C| - |B \cap C| = 201 - |B \cap C|.</math> | ||
Since <math>|C| \le |B \cup C| \le |A \cup B \cup C|</math>, we know <math>101 \le |B \cup C| \le 102</math>,so <math>99 \le |B \cap C| \le 100.</math> | Since <math>|C| \le |B \cup C| \le |A \cup B \cup C|</math>, we know <math>101 \le |B \cup C| \le 102</math>,so <math>99 \le |B \cap C| \le 100.</math> | ||
+ | |||
By the [[Principle of Inclusion-Exclusion]], | By the [[Principle of Inclusion-Exclusion]], | ||
+ | |||
\begin{align} | \begin{align} | ||
− | + | |A \cap B \cap C| &= |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| \\ | |
+ | &= 102 - 100 - 100 - 101 + |A \cap B| + |A \cap C| + |B \cap C| \\ | ||
+ | &= |A \cap B| + |A \cap C| + |B \cap C| - 199 | ||
+ | \end{align} | ||
+ | |||
Therefore, | Therefore, | ||
<cmath>98 + 99 + 99 - 199 \le |A \cap B \cap C| \le 100+100+100-199</cmath> | <cmath>98 + 99 + 99 - 199 \le |A \cap B \cap C| \le 100+100+100-199</cmath> | ||
− | <cmath>\boxed{\textbf{97}} \le |A \cap B \cap C| \le 101</cmath> | + | <cmath>\Rightarrow \boxed{\textbf{97}} \le |A \cap B \cap C| \le 101.</cmath> |
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] |
Latest revision as of 13:11, 20 June 2025
Problem
For any set , let
denote the number of elements in
, and let
be the number of subsets of
, including the empty set and the set
itself. If
,
, and
are sets for which
and
, then what is the minimum possible value of
?
Solution 1
, so
and
are integral powers of
and
. Let
,
, and
where
Thus, the minimum value of
is
Solution 2 (PIE)
As ,
Because we're given that , we know that
, so we can write
Because and
are integers,
and
By the Principle of Inclusion-Exclusion,
Since , we know
, so
By the Principle of Inclusion-Exclusion,
Since , we know
, so
By the Principle of Inclusion-Exclusion,
Since , we know
,so
By the Principle of Inclusion-Exclusion,
\begin{align} |A \cap B \cap C| &= |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| \\ &= 102 - 100 - 100 - 101 + |A \cap B| + |A \cap C| + |B \cap C| \\ &= |A \cap B| + |A \cap C| + |B \cap C| - 199 \end{align}
Therefore,
~formatting- growingdaisy
Solution 3
Represent the elements of as an ordered
-tuple of
's and
's.
and
contain exactly
's, while
contains
's. We want to minimize the number of
's after summing the numbers in the respective positions of these
-tuples. In the most optimal situation, all positions of the resultant tuple contains at least a
; this leaves
positions with a
. Thus, the minimum value is
, with construction given in the above solutions.
-cretinouscretin
See also
1991 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.