Difference between revisions of "2025 USAMO Problems/Problem 5"
Lopkiloinm (talk | contribs) (→Solution 2 (q-analogue roots of unity)) |
Lopkiloinm (talk | contribs) (→Solution 2 (q-analogue via q-Chu–Vandermonde)) |
||
(One intermediate revision by the same user not shown) | |||
Line 10: | Line 10: | ||
https://artofproblemsolving.com/wiki/index.php/File:2025_USAMO_PROBLEM_5_2.jpg | https://artofproblemsolving.com/wiki/index.php/File:2025_USAMO_PROBLEM_5_2.jpg | ||
− | == Solution 2 ( | + | == Solution 2 (combinatorial via Burnside’s lemma) == |
− | + | Let | |
− | + | <cmath> | |
− | + | X=\{(A_1,\dots,A_k):A_j\subseteq\{1,\dots,n\},\;|A_1|=\cdots=|A_k|\}. | |
+ | </cmath> | ||
+ | Then | ||
<cmath> | <cmath> | ||
− | + | |X|=\sum_{i=0}^n\binom{n}{i}^k. | |
</cmath> | </cmath> | ||
+ | The cyclic group <math>C_{n+1}</math> acts on <math>\{1,\dots,n+1\}</math> by “add 1 mod <math>n+1</math>,” and hence diagonally on <math>X</math>. | ||
+ | |||
+ | By Burnside’s lemma, | ||
<cmath> | <cmath> | ||
− | + | |X/C_{n+1}|=\frac1{n+1}\sum_{g\in C_{n+1}}|\mathrm{Fix}(g)|. | |
</cmath> | </cmath> | ||
+ | If <math>g</math> has order <math>d\mid(n+1)</math> then <math>\mathrm{Fix}(g)</math> consists of choosing each <math>A_j</math> as a union of the <math>(n+1)/d</math> orbits of <math>g</math>, so | ||
<cmath> | <cmath> | ||
− | \ | + | |\mathrm{Fix}(g)|=\sum_{i=0}^n\binom{d}{i}^k. |
</cmath> | </cmath> | ||
− | + | Thus | |
− | |||
<cmath> | <cmath> | ||
− | + | (n+1)\,|X/C_{n+1}|=\sum_{d\mid(n+1)}\varphi\Bigl(\tfrac{n+1}d\Bigr)\, | |
− | + | \sum_{i=0}^n\binom{d}{i}^k. | |
− | = \ | ||
</cmath> | </cmath> | ||
− | + | Case 1: <math>k=2m</math> even | |
+ | We prove by induction on the divisor‐lattice of <math>n+1</math> that for every proper divisor <math>d<n+1</math>, | ||
<cmath> | <cmath> | ||
− | + | d\mid\sum_{i=0}^n\binom{d}{i}^{2m}. | |
</cmath> | </cmath> | ||
− | + | Then each term <math>\varphi\bigl((n+1)/d\bigr)\sum_i\binom{d}{i}^{2m}</math> is divisible by <math>\varphi\bigl((n+1)/d\bigr)\,d</math>, and since | |
− | |||
<cmath> | <cmath> | ||
− | + | \sum_{d\mid(n+1),\,d<n+1}\varphi\Bigl(\tfrac{n+1}d\Bigr)\,d | |
− | \ | + | =(n+1)-\varphi(1)\cdot1 |
− | + | =n+1-1, | |
</cmath> | </cmath> | ||
− | + | the entire sum on the right is congruent modulo <math>n+1</math> to | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<cmath> | <cmath> | ||
− | \sum_{i=0}^n \binom | + | \varphi(1)\sum_{i=0}^n\binom{n+1}{i}^{2m} |
− | + | =1\cdot\sum_{i=0}^n\binom{n+1}{i}^{2m}. | |
− | = \ | ||
− | |||
− | |||
</cmath> | </cmath> | ||
− | + | But the left side <math>(n+1)\,|X/C_{n+1}|\equiv0\pmod{n+1}</math>, so | |
− | |||
− | |||
− | |||
− | |||
− | |||
<cmath> | <cmath> | ||
− | + | n+1\;\bigm\vert\;\sum_{i=0}^n\binom{n+1}{i}^{2m}. | |
− | |||
− | |||
</cmath> | </cmath> | ||
− | + | A re‐index <math>n+1\mapsto n</math> yields | |
− | |||
<cmath> | <cmath> | ||
− | + | n+1\;\bigm\vert\;\sum_{i=0}^n\binom{n}{i}^{2m}, | |
− | |||
− | |||
</cmath> | </cmath> | ||
− | + | hence | |
− | |||
− | |||
<cmath> | <cmath> | ||
− | \sum_{i=0}^n \binom | + | A_{2m}(n)=\frac1{n+1}\sum_{i=0}^n\binom{n}{i}^{2m}\in\mathbb Z. |
− | |||
− | |||
− | |||
</cmath> | </cmath> | ||
− | + | Case 2: <math>k</math> odd | |
− | |||
− | |||
− | |||
− | |||
+ | Take <math>n=2</math>. Then | ||
<cmath> | <cmath> | ||
− | + | A_k(2)=\frac{\binom21^k+\binom22^k+\binom23^k}{3} | |
− | = \ | + | =\frac{1+2^k+1}{3} |
− | = \ | + | =\frac{2+2^k}{3}. |
− | |||
</cmath> | </cmath> | ||
− | + | If <math>k</math> is odd then <math>2^k\equiv2\pmod3</math>, so <math>2+2^k\equiv4\equiv1\pmod3</math>, whence | |
− | |||
− | |||
− | |||
− | |||
− | |||
<cmath> | <cmath> | ||
− | \ | + | A_k(2)\notin\mathbb Z. |
</cmath> | </cmath> | ||
− | + | Conclusion | |
− | + | <math>A_k(n)\in\mathbb Z\text{ for all }n\ge1\iff k\text{ even.}</math> | |
==See Also== | ==See Also== | ||
{{USAMO newbox|year=2025|num-b=4|num-a=6}} | {{USAMO newbox|year=2025|num-b=4|num-a=6}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 08:49, 28 June 2025
Problem
Determine, with proof, all positive integers such that
is an integer for every positive integer
Solution 1
https://artofproblemsolving.com/wiki/index.php/File:2025_USAMO_PROBLEM_5_1.jpg
https://artofproblemsolving.com/wiki/index.php/File:2025_USAMO_PROBLEM_5_2.jpg
Solution 2 (combinatorial via Burnside’s lemma)
Let
Then
The cyclic group acts on
by “add 1 mod
,” and hence diagonally on
.
By Burnside’s lemma,
If has order
then
consists of choosing each
as a union of the
orbits of
, so
Thus
Case 1: even
We prove by induction on the divisor‐lattice of that for every proper divisor
,
Then each term is divisible by
, and since
the entire sum on the right is congruent modulo
to
But the left side , so
A re‐index yields
hence
Case 2: odd
Take . Then
If is odd then
, so
, whence
Conclusion
See Also
2025 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.