Difference between revisions of "2009 AMC 10A Problems/Problem 1"

(Solution 2)
(Solution 3)
 
Line 16: Line 16:
 
<math>\frac{128}{12} = 10R8\longrightarrow 11\longrightarrow \fbox{(E)}.</math>
 
<math>\frac{128}{12} = 10R8\longrightarrow 11\longrightarrow \fbox{(E)}.</math>
  
 
== Solution 3 ==
 
  
 
==See Also==
 
==See Also==

Latest revision as of 17:43, 30 July 2025

Problem

One can holds $12$ ounces of soda, what is the minimum number of cans needed to provide a gallon ($128$ ounces) of soda?

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 11$

Solution 1

$10$ cans would hold $120$ ounces, but $128>120$, so $11$ cans are required. Thus, the answer is $\mathrm{\boxed{{(E)}11}}$.

Solution 2

We want to find $\left\lceil\frac{128}{12}\right\rceil$ because there are a whole number of cans.

$\frac{128}{12} = 10R8\longrightarrow 11\longrightarrow \fbox{(E)}.$


See Also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png