|
|
(4 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| |
− | Let <math>ABCDEF</math> be an equiangular hexagon such that <math>AB=6, BC=8, CD=10</math>, and <math>DE=12</math>. Denote by <math>d</math> the diameter of the largest circle that fits inside the hexagon. Find <math>d^2</math>.
| |
| | | |
− | ==Video Solution by Punxsutawney Phil==
| |
− | https://www.youtube.com/watch?v=oc-cDRIEzoo
| |
− |
| |
− | ==Video Solution by Walt S==
| |
− | https://www.youtube.com/watch?v=wGP9bjkdh1M
| |
− |
| |
− | ==Solution 2==
| |
− |
| |
− | Like solution 1, draw out the large equilateral triangle with side length <math>24</math>. Let the tangent point of the circle at <math>\overline{CD}</math> be G and the tangent point of the circle at <math>\overline{AF}</math> be H. Clearly, GH is the diameter of our circle, and is also perpendicular to <math>\overline{CD}</math> and <math>\overline{AF}</math>.
| |
− |
| |
− | The equilateral triangle of side length <math>10</math> is similar to our large equilateral triangle of <math>24</math>. And the height of the former equilateral triangle is <math>\sqrt{10^2-5^2}=5\sqrt{3}</math>. By our similarity condition,
| |
− | <math>\frac{10}{24}=\frac{5\sqrt{3}}{d+5\sqrt{3}}</math>
| |
− |
| |
− | Solving this equation gives <math>d=7\sqrt{3}</math>, and <math>d^2=\boxed{147}</math>
| |
− |
| |
− | ~novus677
| |
− |
| |
− | ==See Also==
| |
− | {{AIME box|year=2018|n=I|num-b=7|num-a=9}}
| |
− | {{MAA Notice}}
| |