Difference between revisions of "2019 MPFG Problems/Problem 15"

(Redirected page to 2019 MPFG Problem 15)
(Tag: New redirect)
 
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2019 MPFG Problem 15]]
How many ordered pairs <math>(x, y)</math> of real numbers <math>x</math> and <math>y</math> are there such that <math>-100 \pi \leq x \leq 100 \pi</math>, <math>-100 \pi \leq y \leq 100 \pi</math>, <math>x + y = 20.19</math>, and <math>\tan x + \tan y = 20.19</math>?
+
<br>
 
+
{{delete|housekeeping}}
==Solution 1==
 
According to the <math>\tan</math> angle sum trigonometric identity,
 
 
 
<cmath>
 
\tan(x + y) = \frac{\tan x + \tan y}{1 + \tan x \cdot \tan y}
 
</cmath>
 
 
 
<cmath>
 
\tan 20.19 = \frac{20.19}{1 + \tan x \cdot \tan y}
 
</cmath>
 
 
 
<cmath>
 
\tan x \cdot \tan y = \frac{20.19}{\tan 20.19} - 1
 
</cmath>
 
 
 
The two equations <math>\tan x \cdot \tan y = \frac{20.19}{\tan 20.19} - 1</math> and <math>\tan x + \tan y = 20.19</math> create a set of [[Vieta's Formulas|Vieta's formulas]] for
 
 
 
<cmath>
 
x^2 - 20.19x + \left( \frac{20.19}{\tan 20.19} - 1 \right) = 0,
 
</cmath>
 
 
 
whose discriminant <math>\Delta</math> is obviously greater than 0. This indicates that there must be a constant value for the set <math>(\tan x, \tan y)</math>.
 
 
 
Assume that <math>\tan x > \tan y</math>. <math>\tan x</math> is represented by the upper blue line, <math>\tan y</math> is represented by the lower red line.
 
 
 
[[File:Forgot_line.png|710px|center]]
 
 
 
As we can see, each value of <math>x</math> matches a value of <math>y</math> on the other side of the <math>y</math>-axis. Because <math>x + y = 20.19</math>, which is approximately <math>6.42 \pi</math>, 6 values of <math>x/y</math> close to <math>-100 \pi</math> cannot be taken.
 
 
 
There are <math>200 - 6 = 194</math> values of <math>(x, y)</math> when <math>\tan x > \tan y</math>. Doubling this number, we get <math>\boxed{388}</math>.
 
 
 
~cassphe
 
 
 
~edited by aoum
 

Latest revision as of 17:47, 26 August 2025


This page has been proposed for deletion. Reason: housekeeping


Note to sysops: Before deleting, please review: • What links hereDiscussion pageEdit history